



### Artificial Intelligence Techniques for Earth Observation Data

Dimitris Bilidas, Begüm Demir, Theofilos Ioannidis, Manolis Koubarakis, Despina-Athanasia Pantazi, George Papadakis, Dharmen Punjani, George Stamoulis and Eleni Tsalapati

> ISWC 2022 Tutorial, Virtual October 23, 2022

### Outline

- Introduction and motivation
- The data science pipeline for big linked Earth observation data
  - Discovering Earth Observation data
  - Deep Earth Query: Information Discovery from Big Earth Observation Data Archives
  - RDF and SPARQL extensions for geospatial data
  - Geospatial RDF stores
  - Transformation of geospatial data
  - Interlinking geospatial RDF data
  - Geospatial knowledge graphs
  - Question answering over geospatial knowledge graphs
  - Searching, browsing, exploring and visualizing linked geospatial data
- Open questions for future work

### Introduction and motivation



### **Open Government Data**

• Lots of **public sector data** has been made open and freely available recently through various government portals.







#### **European Union Open Data Portal**

### (Open) Geospatial Data



### **Open Earth Observation Data**

- Lots of **Earth Observation (EO) data** has also been made freely available recently in Europe and the United States.
- Europe is a pioneer in this area with its flagship Earth Observation Programme Copernicus.





### **Economic Impact**





• See https://www.euspa.europa.eu/sites/default/files/uploads/euspa\_market\_report\_2022.pdf .

# Earth Observation Applications (from the same EUSPA report)

- Agriculture
- Aviation and drones
- Biodiversity, ecosystems and natural capital
- Climate services
- Consumer solutions, tourism and health
- Emergency management and humanitarian aid
- Energy and raw materials
- Environmental monitoring

- Fisheries and aquaculture
- Forestry
- Infrastructure
- Insurance and finance
- Maritime and inland waterways
- Rail
- Road and automotive
- Urban development and cultural heritage

### Earth Observation in Three Slides



From the report https://www.copernicus.eu/sites/default/files/ 2019-02/PwC\_Copernicus\_Market\_Report\_201 9\_PDF\_version.pdf.

### Earth Observation (cont'd)



### Earth Observation (cont'd)



# Some Information about Copernicus (http://www.copernicus.eu/)



- Copernicus is the European programme for Earth Observation.
- Copernicus collects data about our planet using a set of dedicated satellites (the Sentinel families) and contributing missions (existing commercial and public satellites).
- The first satellite (Sentinel-1A) was launched in 2014. Almost 20 satellites will be deployed by 2030.
- Copernicus also collects information from in-situ systems such as ground stations, which deliver data acquired by a multitude of sensors on the ground, at sea or in the air.

### The Five Vs of Copernicus Big Data

• Volume in the Copernicus Open Access Hub (<u>https://scihub.copernicus.eu/</u>)

| Mission | No. of user-<br>level data<br>published in<br>Y2021 | No. of user-<br>level data<br>published<br>since start of<br>Ops | Y2021 No. as<br>% of total<br>published per<br>mission since<br>start of Ops | Volume of<br>user-level<br>data<br>published in<br>Y2021 (PiB) | Volume of user-<br>level data<br>published since<br>start of Ops<br>(PiB) | Y2021 volume<br>as % of total<br>published per<br>mission since<br>start of Ops |
|---------|-----------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| S1      | 1,439,646                                           | 7,451,432                                                        | 19%                                                                          | 2.18                                                           | 11.65                                                                     | 19%                                                                             |
| 52      | 8,147,340                                           | 31,798,019                                                       | 26%                                                                          | 4.18                                                           | 16.20                                                                     | 26%                                                                             |
| 53      | 3,302,695                                           | 12,350,106                                                       | 27%                                                                          | 0.82                                                           | 3.85                                                                      | 21%                                                                             |
| S5P     | 624,541                                             | 2,016,670                                                        | 31%                                                                          | 0.15                                                           | 0.50                                                                      | 31%                                                                             |
| ALL     | 13,514,222                                          | 53,616,227                                                       | 25%                                                                          | 7.34                                                           | 32.21                                                                     | 23%                                                                             |

Table 1: Overall number and volume of published user-level data on the Open Hub both in Y2021 and since the start of operations, per Sentinel mission

### The Five Vs of Copernicus Big Data (cont'd)

• Velocity in the Copernicus Open Access Hub

| Mission | Daily Average Vol<br>(TiB) published in<br>November 2021 | Nov 2021<br>Volume as %<br>of overall daily<br>average | Daily Average Vol<br>(TiB) published in<br>November 2020 | Nov 2020<br>Volume as %<br>of overall daily<br>average |
|---------|----------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------|
| S1      | 6.51                                                     | 35%                                                    | 6.23                                                     | 31%                                                    |
| 52      | 9.67                                                     | 51%                                                    | 9.56                                                     | 47%                                                    |
| \$3     | 2.19                                                     | 12%                                                    | 4.03                                                     | 20%                                                    |
| S5P     | 0.42                                                     | 2%                                                     | 0.40                                                     | 2%                                                     |
| All     | 18.79                                                    | );<br>}                                                | 20.22                                                    |                                                        |

Table 2: Average volume of user-level data published per day in the last month of Y2021 and Y2020, with percentage splits per Sentinel mission

### The Five Vs of Copernicus Big Data (cont'd)

- Variety:
  - The Sentinel satellites comprise different type of sensors (e.g. optical, radar and thermal) and different levels of processing (from raw to advanced products).
  - Datasets used for geospatial applications can be composed not only by satellite data but also by **aerial imagery, in-situ data** and **other collateral information** (e.g. media data, public government data, etc.).
  - This wealth of data is processed by EO actors to extract information and knowledge. This information and knowledge is also Big and similar Big Data challenges apply. For example, 1PB of Sentinel data may consist of about 750.000 datasets which, when processed, about 450TB of content information and knowledge (e.g. classes of objects detected) can be generated.

### The Five Vs of Copernicus Big Data (cont'd)

- Veracity: Decision-making and operations require reliable sources. Thus, assessing the quality of the data is important for whole information extraction chain.
- Value: The Copernicus programme has big economic impact as we discussed earlier.

## Copernicus Data and Information Access Services (DIAS)

- Five DIAS now in operation
- One of them used linked data for their catalogue: <u>https://creodias.eu/</u>



### **Copernicus Services**

- Copernicus Services (<u>https://www.copernicus.eu/en/services</u>) transform the wealth of satellite and in-situ Copernicus data into value-added products by processing and analysing the data.
- There are six Copernicus services covering the following thematic areas: Atmosphere, Marine, Land, Climate, Emergency and Security.



### **Two Examples of Copernicus Services Products**

• The CORINE land cover dataset (available at <u>http://land.copernicus.eu/pan-european/corine-land-cover</u>).



Global solar UV index forecast (available at <a href="http://atmosphere.copernicus.eu/catalogue#/">http://atmosphere.copernicus.eu/catalogue#/</a>).



## The CORINE Land Cover Dataset of 2012 (most recent version 2018)

- It covers **39 European countries**.
- Land cover is characterized using a 3-level hierarchy of classes (e.g., olive groves or vineyards) with 44 classes in total at the 3<sup>rd</sup> level.
- The **minimum mapping unit** is 25 hectares for areal phenomena and 100 meters for linear phenomena.
- It is made available in **raster (GeoTIFF)** and **vector (ESRI/SQLite geodatabase)** formats.





### Main Objective of Our Work Since 2010

 Open up EO data silos by publishing their metadata, data and the information and knowledge extracted from this data on the Web using Semantic Web, Linked Data and Knowledge Graph technologies.





## Why Linked Data?

The vision of **linked data** is to go from a Web of documents to a Web of data:

- Unlock open data dormant in their silos
- Make it available on the Web using Semantic Web technologies (HTTP, URIs, RDF, SPARQL)
- Interlink it with other data (e.g., from the European data portal)









### Examples of Linked Open EO Data

- CORINE land cover of the year 2012
- Urban Atlas of the year 2012

#### https://ai.di.uoa.gr/#datasets







## **Examples of Interesting Linkages**

- The CORINE land cover dataset can be usefully linked with the following datasets:
  - GeoNames
  - Global Administrative Areas
  - DBpedia
  - OpenStreetMap











### Copernicus Data, Information and Knowledge as Open Linked Data: Benefits

- Make Copernicus data more easily discoverable by search engines and new services like Google Dataset Search by using technologies such as schema.org for encoding the metadata. schema.org is now used by all major search engines.
- Once datasets are transformed into linked data (e.g., the CORINE land cover dataset), we can **interlink** them with other open linked data sources (e.g., GADM, OpenStreetMap or DBpedia data) to build **geospatial knowledge graphs.**
- Enable semantics-based querying and visualization of these graphs.
- Enable question answering using natural language questions.
- Therefore: enable easier utilization e.g., by software developers who may not be specialists in Earth Observation.

## The data science pipeline for big linked Earth observation data

#### The Data Science Pipeline



#### The Data Science Pipeline



M. Koubarakis et al. Managing Big, Linked, and Open Earth-Observation Data: Using the TELEIOS/LEO software stack. In: IEEE GRSM (2016).
M. Koubarakis et al. Big, Linked Geospatial Data and Its Applications in Earth Observation. IEEE Internet Computing 21(4), pages 87-91, 2017.

Applications

## The FIREHUB service of the National Observatory of Athens (<u>http://195.251.203.238/seviri/</u>)



opernicus **masters** 

**M. Koubarakis et al.** Real-time wildfire monitoring using scientific database and linked data technologies. EDBT 2013.

### **Precision Farming**



S. Burgstaller et al. LEOpatra: A Mobile Application for Smart Fertilization Based on Linked Data. HAICTA 2017.

#### Change Detection Pilot in BigDataEurope





## Education (http://linkedopendata.gr/)



### Coming up ...

 Book on "Geospatial Data Science: A hands-on approach for building geospatial applications using linked data technologies" (to be published by ACM Books).



### **Discovering Earth Observation data**



### **Using Google for dataset discovery**

- Is there a land cover dataset produced by the European Environmental Agency covering the area of Chania, Crete, Greece?
- Google it!


#### Results



About 33,500 results (0.55 seconds)

#### (PDF) Creation of a land cover map of Crete, using spot satellite data https://www.researchgate.net/../242238279 Creation of a land cover map of Crete ...

PDF | The aim of this work was to create a Land Cover map of Crete on a cartographic scale of 1:50000 ... Article (PDF Available) - January 2002 with 46 Reads ... environment for Member States of the European ... In the CORINE project and the Greek team produced .... covering the area of Rothymnon) was experientially.

#### peri pptx

#### cgi.di.uoa.gr/~koubarak/talks/manolis-koubarakis-talk-fraunhoferIAIS.pptx \*

Lots of public sector data has been made open and freely available recently through various government ... Question: is there a land cover dataset produced by the European Environmental Agency covering the area of Chanla, Crete, Greece?

#### EEA land cover data to be ... - European Environment Agency https://www.eea.europa.eu > ... -> EEA land cover data to be used in mobile phone maps +

Dec 13, 2012 - Data on land use provided by the European Environment Agency ... The Corine dataset will improve mapping and navigation with its ... but at a later stage it may be used to also identify other land cover categories such as agricultural land. ... Geographic coverage ... Nationally designated areas (CDDA) ... Missing: charia seeks preces

#### Mapping sensitivity to desertification in Crete (Greece), the risk for ... https://waponine.com/wcc/article/9/4/.../Mapping-sensitivity-to-desertification-in-Crete by GG Morianou - Cited by 1

Sep 3, 2018 - The Environmental Sensitivity Area (ESA) output is an indicator system producing ... It also influences the effects of chemical amendments, fertilizers, ... (2014) and the European Soil Database, soils in Crete are generally ... In terms of vegetation, Crete is mostly covered by natural grasslands and pastures.

#### Share Get App corine land cover greece download Download Link ... https://imgur.com/a/gCvWuUS/embed?pub=true +

The Corine Land Cover project22 is an activity of the European Environment Agency ... the European Environment Agency that The land cover of Greece is available as an ... Greek Administrative Geography Dataset (download); CORINE Land ... Urban land covers producing the highest surface temperatures (hot spots) are ...

## Let us pose a different query

• Is there a land cover dataset produced by the European Environment Agency?



#### **Results**



Oct 14, 2020 — Information on the environment for those involved in developing, ... This interactive data viewer provides an easy and comprehensive access to land ... The viewer facilitates the assessment of land cover consumed or created over a ... The understanding of the implications of changes in land cover and land ...

#### **Google Dataset Search**

Google

0 🗆

## Dataset Search

corine land cover greece

Q

Try coronavirus covid-19 or education outcomes site:data.gov.

Find out more about including your datasets in Dataset Search.

## **Results**



## **Google Dataset Search**

- Datasets that are indexed using **schema.org**, as proposed by Google, show up.
- Enables users to find datasets stored across the Web by doing a simple keyword search.
- Uncovers information about datasets hosted in thousands of repositories across the web, making these datasets universally accessible and useful.

## **How does Dataset Search find datasets?**

Authors need to add metadata in **schema.org** to each page that describes a dataset.

#### Schema.org:

- Founded by Google, Microsoft, Yahoo!, Yandex. Currently schema.org vocabularies are developed by an open community process.
- Provides a unique structured data markup schema to annotate a variety of topics.
   Tags added to HTML as JSON-LD, Microdata, or RDFa.
- On-page markup allows search engines to understand information included in web pages.

## Schema.org

```
<script type="application/ld+json">{
    "@context": "http://schema.org",
    "@type": ["ItemList", "Dataset"],
    "itemListOrder": "http://schema.org/ItemListOrderAscending",
    "numberOfItems": "7",
    "itemListElement": [{
        "@type": "ListItem", "position": 1,
        "item":{
            "@type" : "Dataset",
            "name": "GADM database of Global Administrative Areas",
            "alternateName": "GADM",
            "description": "GADM is a spatial database of the location ....",
            "author": "University of Athens",
            "sourceOrganization": "Robert Hijmans, in collaboration with ...",
            "copyrightYear": "2018",
            "keywords":["GADM", "Global Administrative Areas", "GADM 2015"],
            "spatialCoverage": "World", "temporalCoverage": "2015", "fileFormat": "7z",
            "isBasedOn": "GADM database of Global Administrative Areas 2015, Version 2.8",
            "isAccessibleForFree": true,
            "distribution": {
                "@type":"DataDownload", "encodingFormat":"7z",
                "contentUrl":"https://datahub.ckan.io/dataset/gadm"},
            "url": "https://datahub.ckan.io/dataset/gadm"}}, ... ]} </script>
```

## **Google Dataset Search**

| Google           |                                                                                         | Q GADM database of Global Administrative Areas X 🛈 🖽 🔡 Egn in                                                                                                                                                                                                                                                                                                                       |
|------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| - Lest up        | odated - Download format                                                                | Usage rights + Topic Free Saved datasets                                                                                                                                                                                                                                                                                                                                            |
|                  | ADM database of Global<br>dministrative Areas<br>duca gr<br>du apps factory<br>] 7:     | GADM database of Global Administrative Areas<br>GADM<br>Explore at al-duce gr                                                                                                                                                                                                                                                                                                       |
| S le             | outh Africa Admin Boundaries<br>vel I<br>mit.africageoportal.com<br>plated May 29, 2220 | 7z     Dataset provided by     Robert Hijmans, in collaboration with colleagues at the University of California, lierkeley Moseum of Vertebrate Zoology     (Julian Kapoor and John Wieczonek), the international Rice Research Institute (Nel Ganza, Aliven Maunahan, Amel Rafa)     and the University of California, Davis (Alex Mandel), and with contributions of many others. |
|                  | azakhstan District Boundary<br>Ibarogis.com<br>Indated Aug.7, 2016                      | Authors<br>University of Athens<br>Time period covered<br>2015                                                                                                                                                                                                                                                                                                                      |
| C Pr<br>De<br>de | otected Areas and<br>eforestation: New Results from.<br>lacatalog worldbank.org         | Area covered World Description GAVM is a social database of the location of the exclusion states for administrative boundaries) for use in O/E                                                                                                                                                                                                                                      |
| E up             | excel<br>dated Mar 12, 2018                                                             | and similar software.                                                                                                                                                                                                                                                                                                                                                               |

## **Google Dataset Search by the Numbers**

O. Benjelloun, S. Chen, N. Noy: Google Dataset Search by the Numbers (Jun 2020) <u>https://arxiv.org/abs/2006.06894</u>

- > As of March 2020, the corpus contained 28 million datasets from more than 3,700 sites
- The corpus is a reasonably representative snapshot of the datasets published on the Web, but there is no way of measuring how well the corpus covers all the datasets available on the Web

## **Google Dataset Search by the Numbers**

O. Benjelloun, S. Chen, N. Noy: Google Dataset Search by the Numbers (Jun 2020) <u>https://arxiv.org/abs/2006.06894</u>

- > Licenses and access: Only 34% of the datasets provide any licensing information
  - most of datasets available for free, almost always allowed reuse for both commercial and non-commercial purposes
- > Linked Data: Fewer than 1% of datasets in the corpus are in linked data formats
  - there is plenty of shared data that the Semantic Web community produces, but the final step of describing it appears to be less common

## **Google Dataset Search - An analysis of online datasets**

#### Distribution of dataset topics



Reference: https://ai.googleblog.com/2020/08/an-analysis-of-online-datasets-using.html

## **Google Dataset Search - An analysis of online datasets**

#### What do users access?



Reference: https://ai.googleblog.com/2020/08/an-analysis-of-online-datasets-using.html

## **Google Dataset Search**

- T. Alrashed, D. Paparas, O. Benjelloun, Y. Sheng, and N. Noy: Dataset or Not? A Study on the Veracity of Semantic Markup for Dataset Pages (October 2021) <u>https://research.google/pubs/pub50547/</u>
  - Schema.org has become prevalent on the Web as a way to express the semantics of Web page content
    - it is present on more than **30%** of Web pages
  - > We cannot always take **Schema.org/Dataset** markup at face value
    - pages may include this markup erroneously or for the purposes of search-engine optimization

## Let us pose our original query to Dataset Search



Your search - Is there a land cover dataset produced by the European Environment Agency covering the area of Chania, Crete, Greece? - did not match any datasets. Suggestions:

- · Make sure all words are spelled correctly.
- · Try different keywords.
- Try more general keywords.
- Try fewer keywords.

Learn how you can add new datasets to our index.

#### **EO dataset search - Copernicus Open Access Hub**

Provides complete, free and open access to Sentinel-1, Sentinel-2, Sentinel-3 and Sentinel-5P user products (<u>https://scihub.copernicus.eu</u>)

| 👍 @esa 😡                                      | micus                         | Copernicus Open Access Hub                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ± 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 🗑 Frank sameth urbaria                        |                               | a 🔍 🕺 🖉                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | a Paris                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| - Sort By:                                    | ر مر<br>- Order By:           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SIX I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Ingeston Data 👻                               | Descending +                  | All Second and Market (1997)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 22 4 3 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Sensing period                                |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E x C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| • Ingention period                            |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and a series of the series of |
| B Mission: Sentinel-1<br>Satelite Plattern    | Product Type                  | And a second sec |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| *<br>Polarisation                             | Sensor Mode                   | Annual Contraction and Annual Contraction Contraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Andreas<br>Angelerat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Relative Ortol Number (from 1 to<br>175)      | Collecton                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| O Mission: Santinal-2                         |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Rentered Factories                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Safelite Parliann                             | Product Type                  | and the second s | And And And And And                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| W<br>Relative Orbit Number (hors 1 to<br>143) | Cloud Cover % (e.g.() 70 8.4) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

#### **EO dataset search - Copernicus Open Access Hub**



### **EO dataset search - EOWEB® GeoPortal**

- A multi-mission web portal for interactive access to the German Aerospace Center (DLR) Earth observation data holdings
  - Combines classic discovery and order services for data held in the German Satellite Data Archive (D-SDA) with browse and download features via interoperable, OGC-compliant visualization and download services (<u>https://eoweb.dlr.de/egp/</u>)

#### **EO dataset search - EOWEB® GeoPortal**

| COC E    | Portal New Colectors Proteite New                                                                                                                                                                             | Logged is an good + Hay +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A. |  |  |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|--|
|          | The Descent of Films & Named & Ten & Name                                                                                                                                                                     | Cover Friters. High Friter Dallary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |  |  |
|          | Ther by Reports ()<br>Served 2 (a) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c                                                                                                                             | S III Comme<br>- uni<br>- uni<br>-<br>- uni<br>- |    |  |  |
| Tax Make | teris (Australia 2                                                                                                                                                                                            | T A BER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |  |  |
| 1 Mars   | Bentinel 2 WH - Level 3A (MAJA/WASP) - Germany West Town Town Tree Offer                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |  |  |
| Experie  | The collection conterns synthesized Sentime-J Laws 3A surface reflectances for Germany on a membry<br>lease computed by the RMOP processor (which utilizes L2A products derived from the RMUA processor).     | * · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |  |  |
|          | Section 2 MB - Level 2A (MAJA Tited - Germany                                                                                                                                                                 | the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |  |  |
| Depart   | This collector company. Sentinel 2 Level 24 suffice reflectances, which are computed for the country of<br>Germany using the time-sentes based MAUA processor. During the Level 2K processing, the data are   | and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |  |  |
|          | Bandmad 2 MD - Vegetation Indices (ADRD DE) - Germany, Monthly                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |  |  |
| Ener     | This product comprises monthly composites and temporal statistics of selected vegetation indices (V) for all<br>of Demary from 2018 to today in 10m resolution, which were calculated using the DLH TimeBlain |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |  |  |
| U.Mee    | Bentiner 2 MB - Vegetation Indices (AGRO-OE) - Germany, Yearly Composites Meet                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |  |  |
| Exper    | This product compress yearly composities and temporal statistics of selected vegetation indices (VI) for all<br>of Demany from 2013 to bolay in 10m resolution, which were calculated using the DLR TimeBian  | C MARK 2007 Mark Au                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |  |  |

### EO dataset search - Earthdata Search

- Earthdata Search enables data discovery and access to more than 33,000 EO data collections from NASA's EOSDIS, U.S. and international partner agencies (<u>search.earthdata.nasa.gov/</u>)
  - Users can:
    - Search for EO data: Earthdata Search uses the Common Metadata Repository (CMR) for sub-second search
    - Preview EO data: Using Global Imagery Browse Services (GIBS), enables high-performance data visualization
    - Download and access EO data: In addition to direct download, surfaces OPeNDAP services for simpler spatial and parameter subsetting

#### **EO dataset search - Earthdata Search**



## **Copernicus Data and DIAS**

#### Data and Information Access Services (DIAS):

- Five competitive platforms for quick access to a huge resource of Earth Observation data (satellite imagery) and Copernicus themed services.
- Easy and quick search, processing and sharing of satellite data.
- Quick access to satellite imagery via virtual machines.
- Data is free but computing power on a DIAS platform needs to be paid for.

### **Copernicus Data and DIAS**



## **CREODIAS - Uses linked data in its catalogue!**

**SPARQL interface:** provides extended search capabilities for linking metadata of all products stored in the repository with various information from the Internet

Example Query: Find all Sentinel-2 images in the area of Brussels

SPARQL Query:

#### **CREODIAS**



## **Current work**

- We are developing an extension to schema.org for Earth Observation data (eo.schema.org).
- Main idea:
  - Use OGC 17-003: EO Dataset Metadata GeoJSON(-LD) Encoding Standard
- We are also developing an **annotation tool** that can be used to annotation Earth Observation datasets using this extension.

# Deep Earth Query: Information Discovery from Big Earth Observation Data Archives





#### Deep Earth Query: Information Discovery from Big Earth Observation Data Archives

Prof. Dr. Begüm Demir Big Data Analytics for Earth Observation (BigEarth) Group, BIFOLD Remote Sensing Image Analysis (RSiM) Group, Faculty of EECS, TU Berlin



#### **Space Renaissance**

✓ Recent Earth Observation (EO) satellite missions have led to a significant growth of EO image archives.







BIFOLD

#### **EnMAP: Germany's Hyperspectral Satellite for Earth Observation**





©DLR

- ✓ #bands: 242
- ✓ spatial resolution: 30m.
- ✓ revisit time: 27 days
- ✓ radiometric resolution: 14 bits





First EnMAP image



Sweden, Gothenburg Search and Retrieval from Big EO Data Query Archives **Coniferous forest** Massive EO Data Archive

France, Bordeaux



**Coniferous forest** 

Retrieved Images with Similar Content

Poland, Poznan



Coniferous forest

Finland, Joensuu



**Coniferous forest** 

Query



BIFOLD







France, Bordeaux



**Coniferous forest** 

Poland, Poznan

**Retrieved Images with Similar Content** 



**Coniferous forest** 

Finland, Joensuu

BIFOLD



**Coniferous forest** 

Sweden, Gothenburg



Massive EO Data Archive

Bi-Temporal Change-Query

Data Archives Search and Retrieval from Big EO



BIFOLD





Q: Are there any *coastal lagoons* present? A: No.

Q: Besides *agricultural areas*, what classes are in the image? A: Water bodies.



Q: Are there *artificial areas* and *water bodies*? A: Yes.

Q: Besides *artificial areas* and *water bodies*, what classes are in the image? A: None.


# Visit Our Group Webpage https://rsim.berlin



#### **Information Discovery by Querying Archives**





G. Sumbul et al. "DL for Image Search and Retrieval in Large Remote Sensing Archives", in "Deep learning for the Earth Sciences: A Comprehensive Approach to Remote Sensing, Climate Science and Geosciences", John Wiley & Sons, 2021.

## ying Archives

## Information Discovery by Querying Archives

#### Traditional systems



#### **Information Discovery by Querying Archives**



**Retrieved Images** 

BIFOLD

## **Query by Image through Hashing**





S. Roy, E. Sangineto, B. Demir, N. Sebe, "Metric-Learning based Deep Hashing Network for Content Based Retrieval of Remote Sensing Images", IEEE Geoscience and Remote Sensing Letters, vol. 18, no. 2, pp. 226-230, 2021.

## **Query by Image through Hashing**





Deep class-wise hashing Graph-based hashing Zero-shot hashing Adversarial hashing Multi-modal hashing Unsupervised hashing Semantic-preserving hashing Attention guided hashing Weakly-supervised hashing

- 1000 classes ⇒ Pool, Inception Module Inception Net ImageNet Images 1024 512 A Triplet Loss G Representation Loss **Bit Balancing Loss** Pool\_ Inception Module MiLaN UCMD Triplets Pre-trained Inception Net Instei

S. Roy, E. Sangineto, B. Demir, N. Sebe, "Deep Metric and Hash-Code Learning for Content-Based Retrieval of Remote Sensing Images", International Geoscience and Remote Sensing Symposium, 2018.

- Triplet loss: after training, a positive sample is "moved" closer to the anchor sample than the negative samples;
- Representation penalty loss: pushes the activations of the last layer of the network to be binary;
- Bit-balancing loss: encourages the network to produce hash codes having an equivalent number of 0s and 1s.







**Data set:** archive that consists of annotated images associated with 21 categories selected from aerial orthophotos with a pixel resolution of 30 cm. Each class includes 100 images that were downloaded from the USGS National Map of several US regions.



Y. Yang, and S. Newsam, "Geographic image retrieval using local invariant features", IEEE Transactions on Geoscience and Remote Sensing, vol. 51, no. 2, pp. 818-832, Feb. 2013.

BIFOLD





T-SNE: t-distributed stochastic neighbor embedding

BIFOLD





- (a) The query image
- (b) Images retrieved by kernel-based hashing
- (c) Images retrieved by the MiLaN

#### **On the Way to BigEarthNet**





**Problem:** Differences on the characteristics of images between computer vision and RS.

#### 21

#### **BigEarthNet: A Benchmark Archive for EO**

- ✓ To support the studies on search and retrieval, we developed BigEarthNet that:
  - consists of 590,326 Sentinel-1&2 images.
  - opens up promising directions to advance studies for the analysis of largescale EO data archives.



BigEarthNet: A Large-Scale Benchmark Archive for Remote Sensing Image Understanding. IEEE IGARSS, Yokohama, Japan, 2019.

BigEarthNet-MM: A Large Scale Multi-Modal Multi-Label Benchmark Archive for Remote Sensing Image Classification and Retrieval. IEEE GRSM, 2021.





#### **BigEarthNet: A Benchmark Archive for EO**

- ✓ Each image patch is associated with one or more land-cover class labels provided from the CORINE Land Cover database of the year 2018 (CLC 2018).
- CLC 2018 has been produced by the European Environment Information and Observation Network of the European Environment Agency.



Urban fabric, Arable land, Mixed forest, Land principally occupied by agriculture.



Arable land, Mixed forest, Urban fabric.



Urban fabric, Arable land, Coniferous forest, Transitional woodland/shrub, Land principally occupied by agriculture.



Urban fabric, Arable land, Land principally occupied by agriculture.



Urban fabric, Arable land, Coniferous forest, Mixed forest, Transitional woodland/shrub.



Urban fabric, Arable land, Pastures, Complex cultivation patterns



Coniferous forest, Mixed forest, Inland waters, Transitional woodland/shrub.



Urban fabric, Arable land, Coniferous forest, Mixed forest, Transitional woodland/shrub

BIFOID

## **Informative and Representative Triplet Selection**





BIFOLD

#### **Informative and Representative Triplet Selection**

- Diverse anchor selection (DAS) step aims to find a small set of the most representative anchors.
- ✓ An iterative algorithm is introduced to evaluate the diversity in the feature space among the images from a training mini-batch 𝔅.
- ✓ At each iteration, it selects a new anchor, which is associated with the highest distance from already selected anchors.

 $x_{H} = \operatorname*{argmax}_{x_{b} \in \mathcal{B} \setminus \mathcal{A}} \max_{x_{a} \in \mathcal{A}} D(x_{b}, x_{a})$ 

- ✓ To select relevant, hard and diverse positive-negative image selection, we develop a strategy that evaluates:
  - relevancy based on class label similarity;
  - hardness based on the distance to an anchor;
  - diversity based on the distance among candidate positive/negative images.
- ✓ For each  $x_a \in A$  it initially calculates the informativeness of the images to select the positive and negative image candidates.

$$I_{P}(x_{a}, x_{b}) = \beta \times S(x_{a}, x_{b}) + (1 - \beta) \times D(x_{a}, x_{b})$$
  
Soft pair-wise similarity  
$$I_{N}(x_{a}, x_{b}) = \beta \times [1 - S(x_{a}, x_{b})] + (1 - \beta) \times [1 - D(x_{a}, x_{b})]$$



#### **Results and EarthQube Portal**







a) query image; images retrieved by b) standard triplet selection; and c) our triplet sampling approach. Query Classes: arable land, pastures, and complex cultivation patterns.

| Method   | Precision | Recall | F <sub>1</sub> Score |
|----------|-----------|--------|----------------------|
| Standard | 73.7%     | 73.8%  | 73.8%                |
| Our      | 77.7%     | 75%    | 76.7%                |



A. K. Aksoy et al., "Satellite Image Search in AgoraEO", International Conference on Very Large Databases, Sydney, Australia, Sept. 2022.



#### **EarthQube Portal**















#### **EarthQube Portal**













#### **Cross Modal Retrieval**





#### **Cross Modal Self-Supervised Retrieval**



- Inter-modal similarity preservation: Mutual information maximization loss function  $\mathcal{L}_{MIM}$  is defined based on normalized temperature-scaled cross entropy in a self-supervised manner.
- ✓ Inter-Modal Discrepancy Elimination:  $L_{MDE}$  is defined aiming to minimize the angular distance of multi-modal image pairs.
- ✓ Intra-Modal Similarity Preservation:  $L_{MSP}$  is defined aiming to maximize the cosine similarity of the most similar image pairs within each modality.



Gencer Sumbul, Markus Müller, Begüm Demir, 'A Novel Self-Supervised Cross-Modal Image Retrieval Method in Remote Sensing', IEEE ICIP, Bordeaux, France, Oct. 2022.

#### **Results: Cross Modal Self-Supervised Retrieval**



30

| Method  | Requirement<br>of Labels | S1 → S2     | S2 → S1     | Average     |
|---------|--------------------------|-------------|-------------|-------------|
| S2MC    | $\checkmark$             | 41.7        | 45.6        | 43.7        |
| deep-SM | $\checkmark$             | 65.0        | 68.7        | 66.8        |
| DSCMR   | $\checkmark$             | <u>73.9</u> | <u>71.3</u> | <u>72.6</u> |
| DCCA    | ×                        | 49.1        | 40.3        | 44.7        |
| SimCLR  | ×                        | 47.3        | 53.5        | 50.4        |
| DUCH    | ×                        | 66.6        | 67.8        | 67.2        |
| Ours    | ×                        | 71.5        | 71.3        | 71.4        |

[1] Li et al, "Semantically supervised maximal correlation for cross-modal retrieval," in IEEE ICIP, pp. 2291–2295, 2020.

[2] Wei et al. "Cross-modal retrieval with CNN visual features: A new baseline," IEEE Transactions on Cybernetics, vol. 47, no. 2, 2017.

[3] Zhen et al, "Deep supervised cross-modal retrieval," in IEEE CVPR, pp. 10386–10395, 2019.

[4] Andrew et al. "Deep canonical correlation analysis," ICML, vol. 28, no. 3, pp. 1247–1255, 2013.

[5] Chen et al, "A simple framework for contrastive learning of visual representations", ICML, pp. 1597–1607, 2020.

[6] G. Mikriukov, M. Ravanbakhsh, and B. Demir, "Unsupervised contrastive hashing for cross-modal retrieval in remote sensing," IEEE ICASSP, 2022.

#### **Results: Cross Modal Self-Supervised Retrieval**



(a) S1 query image; and S2 images retrieved by (b) self-supervised DUCH; (c) fully supervised DSCMR; and (d) our method.

BIFOLD

#### **Outlook**



- ✓ Development of methods and tools is needed for global-scale scalable RS CBIR with high accuracy and zero-annotation cost.
- ✓ Thematic maps (which may contain noisy labels) can be used. Methods that are robust to the label noise are required.



Discontinuous urban fabric Coniferous forest Mixed forest Industrial or commercial units missing label



Discontinuous urban fabric Industrial or commercial units Non-irrigated arable land s Coniferous forest wrong label



Discontinues urban fabric, Complex cultivation patterns, non-irrigated arable land

> Noise-Robust DL/ML Models



- Correct caption: A red church with a white cross in top is near a river with boats
- Noisy caption (typos):
  - A rad churhc with a white cros in top is neer a rver with boatss.
- Noisy caption (wrong caption):
  - A rectangular playground and many tall buildings around.



# RDF and SPARQL extensions for geospatial data



## Background

- Geographic information systems
- Spatial database research
- Spatial logics and reasoning
- Industry standards and implemented systems









## **Overview**

- The data model stRDF/stSPARQL (2012)
- The OGC standard GeoSPARQL (2012)
- The framework RDFi (2013)
- GeoSPARQL+ (2020)
- The proposed language GeoSPARQL 1.1 (2019-2022)

## The Model stRDF

- An extension of RDF for the representation of geospatial information that changes over time.
- Geospatial dimension:
  - Two **spatial data type**s are introduced.
  - Geospatial information is represented using **spatial literals** of these datatypes.
  - OGC standards **WKT** and **GML** are used for the serialization of spatial literals.
- **Temporal dimension** (not covered in this tutorial)

## **Example: Greek Administrative Geography**



## **Domain Ontology**



## **Connect to a Top Level Geospatial Ontology + Introduce Some Properties**



# **Example of stRDF (geospatial dimension)**

gag:Olympia

- rdf:type gag:MunicipalCommunity;
- gag:hasName "Ancient Olympia";
- gag:hasPopulation "184"^^xsd:int;
- strdf:hasGeometry "MULTIPOLYGON(((308511.906249999 4201042,308763.8125 4200714,
- 308840.09375 4200629,308939.3125 4200545,......308390.000000001 4201276,308451.593749999 4201167,308467 4201125,308511.906249999 4201042)));<<u>http://www.opengis.net/def/crs/EPSG/0/2100</u>>"^^strdf:WKT.



## The Query Language stSPARQL (geospatial dimension)

- It is an **extension of SPARQL 1.1**
- It offers families of functions for querying geometries.
- The functions are taken mostly from the **OGC standard** "OpenGIS Simple Feature Access Part 2: SQL Option".
- They are similar to the ones offered by spatially-enabled relational database management systems (e.g., PostGIS).

# **Example of stSPARQL (geospatial dimension)**

**Query:** Compute the parts of burnt areas that lie in coniferous forests

## **SELECT** ?burntArea (strdf:intersection(?baGeom, strdf:union(?fGeom)) AS ?burntForest)

WHERE

- ?burntArea rdf:type noa:BurntArea; strdf:hasGeometry ?baGeom.
  - ?forest rdf:type clc:Region; clc:hasLandCover clc:ConiferousForest;

strdf:hasGeometry ?fGeom.

FILTER (strdf:intersects(?baGeom,?fGeom)) } **GROUP BY** ?burntArea ?baGeom





## The OGC Standard GeoSPARQL (2012)



## **GeoSPARQL vs. stSPARQL**



## **Example of the Topology Vocabulary Extension**

#### Triples:

gag:Olympia rdf:type gag:MunicipalCommunity .
gag:OlympiaMunicipality rdf:type gag:Municipality .
gag:WesternGreece rdf:type gag:Region .

gag:Olympia geo:sfWithin gag:OlympiaMunicipality .
gag:OlympiaMunicipality geo:sfWithin gag:WesternGreece .

Query: Find the region in which Ancient Olympia is located.

Answer: gag:WesternGreece
# **Example of the Topology Vocabulary Extension**

#### Triples:

gag:Olympia rdf:type gag:MunicipalCommunity .
gag:OlympiaMunicipality rdf:type gag:Municipality .
gag:WesternGreece rdf:type gag:Region .

gag:Olympia geo:sfWithin gag:OlympiaMunicipality .
gag:OlympiaMunicipality geo:sfWithin gag:WesternGreece .

Query: Find the region in which Ancient Olympia is located.

Answer: gag:WesternGreece

Method: By transitivity of geo:sfWithin.
Not supported by GeoSPARQL!

### **The Query Rewrite Extension**

- Enables the translation of qualitative topological information appearing in a query to quantitative.
- This is done by rewriting of queries with triple patterns involving topological relations into queries with topological functions on geometries.
- The rewriting is based on **RIF rules**.

### **Beyond the Topology Vocabulary Extension**

#### **Triples:**

ex:regionA strdf:hasGeometry "POLYGON(A)"^^strdf:WKT .
ex:regionB strdf:hasGeometry "POLYGON(B)"^^strdf:WKT .

\_:regionX geo:sfWithin ex:regionB



**Query**: Is regionX contained in regionA?

# **Beyond the Topology Vocabulary Extension (cont'd)**

#### **Triples:**

ex:regionA strdf:hasGeometry "POLYGON(A)"^^strdf:WKT .
ex:regionB strdf:hasGeometry "POLYGON(B)"^^strdf:WKT .

\_:regionX geo:sfWithin ex:regionB



Query: Is regionX contained in regionA?

Answer: Yes
Not supported by GeoSPARQL.

# The Framework RDFi (RR2013, AIJ 2016)

- Extension of RDF with incomplete information.
- New kind of literals (e-literals) for each datatype.
  - Property values that exist but are unknown or partially known.
- **Partial knowledge**: captured by constraints (appropriate constraint language *L*).
- RDF graphs extended to RDF<sup>i</sup> databases: pair (G, φ)
  - G: RDF graph with e-literals
  - φ: quantifier-free formula of *L*

# The Framework RDFi (cont'd)

- Formal semantics for RDF<sup>i</sup> and SPARQL query evaluation.
- Representation Systems:
  - CONSTRUCT queries
    - Without blank nodes in their templates
    - With monotone graph patterns (using only operators AND, UNION and FILTER).
  - CONSTRUCT queries
    - Without blank nodes in their templates
    - With well-designed graph patterns (graph patterns using only AND, FILTER and OPT plus some intuitive conditions).
- Computational Complexity:
  - Query answering is coNP-complete (data complexity) for certainty queries and various interesting classes of spatial constraints. Compare this with LOGSPACE complexity for the standard SPARQL case.

# GeoSPARQL+ (Homburg et al. ISWC 2020)

- GeoSPARQL+ ontology in order to integrate geospatial raster data into the Semantic Web

   New type of geospatial data for raster
- Extension of GeoSPARQL query language
  - New filter functions based on raster algebra operations, e.g. rasterPlus, rasterSmaller
- **Combined vector and raster data analysis** can be achieved from a single query

# GeoSPARQL+ Ontology (Homburg et al. ISWC 2020)



# **GeoSPARQL+ Example (Homburg et al. ISWC 2020)**

- Give me all roads which are not flooded by more than 10cm
  - Road network vector dataset
  - Flood altitude raster dataset



# **GeoSPARQL+ Example (Homburg et al. ISWC 2020)**

- Give me all roads which are not flooded by more than 10cm
  - Road network vector dataset
  - Flood altitude raster dataset

SELECT ?road

```
WHERE {
```

```
?road a ex:Road ; geo:hasGeometry ?roadseg .
?roadseg geo:asWKT ?roadseg_wkt .
?floodarea a ex:FloodRiskArea ;
        geo2:asCoverage ?floodarea_cov .
?floodarea_cov geo2:asCoverageJSON ?floodarea_covjson.
BIND(geo2:rasterSmaller(?floodarea_covjson,10) AS? relfloodarea)
FILTER(geo2:intersects(?roadseg_wkt,?relfloodarea))
}
```

# **GeoSPARQL 1.1**

- In 2019 OGC reactivated the GeoSPARQL Standards Working Group (SWG) in order to publish a new version of GeoSPARQL
  - GeoSPARQL 1.1 will contain non-breaking changes with respect to the 2012 GeoSPARQL version (version 1.0)
  - SWG foresees another future version that will no longer be backward compatible with version 1.0
  - Currently (as of Oct 2022), SWG is **finalizing** the proposal regarding version 1.1
- GeoSPARQL 1.1 will incorporate modifications and improvements resulted from users' requests after a decade of wide adoption of GeoSPARQL 1.0
- Living document with the draft version available at: https://opengeospatial.github.io/ogc-geosparql/

# **GeoSPARQL 1.1**

- Extended ontology
  - **Classes:** Spatial Object Collection, Feature Collection, Geometry Collection
    - These collections are used to represent groups of spatial objects, features and geometries respectively, in order to offer to the users interoperability with popular GIS tools, which usually use the notion of collections of such entities
  - Spatial Object Properties used to define scalar properties: geo:hasLength, geo:hasPerimeterLength, geo:hasArea and geo:hasVolume are subproperties of geo:hasSize, whereas geo:hasMetricLength, geo:hasMetricPerimeterLength, geo:hasMetricArea and geo:hasMetricVolume are subproperties of geo:hasMetricSize.
  - Feature Properties: geo:hasBoundingBox and geo:hasCentroid
  - Geometry Serializations: New geometry serializations are now defined in GeoSPARQL 1.1 in order to support the following formats: GeoJSON, KML and DGGS, and also new functions are also defined for transforming between different serialization formats.

# **GeoSPARQL 1.1**

- Non-topological Query Functions which add functionality in GeoSPARQL that was missing in comparison to capabilities commonly offered by GIS tools or spatial databases.
  - geof:area, geof:coordinateDimension, geof:dimension, geof:geometryN, geof:geometryType, geof:is3D, geof:isEmpty, geof:isMeasured, geof:isSimple, geof:length, geof:maxX, geof:maxY, geof:maxZ, geof:minX, geof:minY, geof:minZ, geof:numGeometries, geof:spatialDimension and geof:transform.
- Spatial Aggregate Functions that accept as input a set of geometries:
  - geof:aggBoundingBox, geof:aggBoundingCircle, geof:aggCentroid, geof:aggConcaveHull and geof:aggUnion.
- Profile definition using the RDF the Profiles Vocabulary that facilitates the formal definition of profiles of specifications in a machine-readable way.
- **RDF validation file** expressed in the Shapes Constraint Language (SHACL) used to express specific conditions in order to perform validity check on input RDF graphs.
  - e.g. Ensure that
    - each entity that corresponds to a geometry has at least one declared serialization
    - an entity cannot act as both subject and object in triples whose properties are geo:hasGeometry or a subproperty of it
    - RDF literals that correspond to WKT should be well-formed according to the official WKT specification

# Thank you!

#### **Questions ?**

# **Geospatial RDF stores**



#### Theofilos Ioannidis @tioannid1 tioannid@di.uoa.gr tioannid@yahoo.com

### Outline

- Part A Geospatial RDF stores (25 min)
- Part B Q&A or Benchmarking geospatial RDF stores (5 min)

# Part A - Geospatial RDF stores

# Part A.1 - Early Experimental Systems

Perry's Ph.D dissertation The system of Brodt et al.

# **Perry PhD dissertation**

- Implementation on top of Oracle 10g by Wright State University
- Support for SPARQL-ST
- GeoRSS GML serialization of geometries
- Spatial and temporal variables
- Spatial and temporal filters (RCC8, Allen)
- R-tree spatial index



Perry, Matthew Steven. "A framework to support spatial, temporal and thematic analytics over semantic web data." (2008)

### Brodt et al.

- Built on top of RDF-3X by University of Stuttgart
- No GeoSPARQL support
- Geometries represented as typed WKT literals
- WGS84 supported
- OGC-SFA spatial operations as SPARQL filter functions
- R-tree supported (but only used for spatial selections)

Brodt, Andreas, Daniela Nicklas, and Bernhard Mitschang. "Deep integration of spatial query processing into native RDF triple stores." Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems. 2010

# Part A.2 - Outdated Systems

OpenRDF Sesame uSeekM

# **OpenRDF Sesame**

- Java framework for processing and handling RDF data by Aduna.
- SAIL (Storage and Inference Layer), stackable architecture
- Spatial extensions: extending RDBMS SAIL with spatial databases
- Major releases available: v2.x and v4.x
- Open source available at: <u>https://sourceforge.net/projects/sesame/</u>





- Spatial plugin for Sesame by OpenSahara. Supports:
- GeoSPARQL support
  - <sup>o</sup> Core
  - Topology Vocabulary Extension (Simple Features, Egenhofer, RCC8)
  - Geometry Extension (WKT)
  - Geometry Topology Extension (Simple Features, Egenhofer, RCC8, WKT)
  - RDFS Entailment Extension (Simple Features, Egenhofer, RCC8, WKT)
- Only WGS84 CRS
- Available spatial indexes: R-Tree-over-GiST, Quadtree, Geohash (PostGIS or ElasticSearch as providers)
- Open source (Apache v2.0). Currently, no available official source code location.
- https://web.archive.org/web/20140415085418/https://dev.opensahara.com/ projects/useekm

# Part A.3 - Systems with Limited Geospatial/GeoSPARQL Functionality

AllegroGraph OpenLink Virtuoso Blazegraph DB MarkLogic Server



- Quad store developed by Franz Inc. Supports:
- No GeoSPARQL
- Point geometries (N-dimensional Geospatial)
- Non standard CRSs
- Only a few spatial operations supported (Buffer, Bounding Box, Distance)
- Includes temporal functionalities: datetimes, time points, and time intervals and relations (properties) between these
- Is horizontally scalable through federation and sharding (FedShard)
- Latest v7.3.0 (May 2022)
- Closed source. Free edition available at <u>https://allegrograph.com/downloads/</u>

# **OpenLink Virtuoso**

- Developed by OpenLink. Virtuoso Open Source (VOS)
- 3 Java APIs: Jena (v2.x, v3.0.x, v4.3.x), Sesame (v1, v2, v4), RDF4J v2.x.
- No GeoSPARQL (stable/7 branch), GeoSPARQL\* (develop/7 branch)
- Points only
- Serialized as typed literals (datatype virtrdf:Geometry)
- Spatial operations (subset of SQL/MM)
- Multiple CRS
- WKT for geometry types
- R-tree spatial index
- Latest v7.2.7 (May 2022)
- Latest from develop/7 branch v7.2.6-rc1 (Oct 2018)
- VOS available at <a href="http://vos.openlinksw.com/owiki/wiki/VOS">http://vos.openlinksw.com/owiki/wiki/VOS</a>

# **Blazegraph DB**



- Previously known as Bigdata. Developed by SYSTAP, LLC. Supports:
- Written in Java, uses Sesame, no GeoSPARQL yet
- Dedicated, typed literals
  - http://www.bigdata.com/rdf/geospatial/literals/v1#lat-lon
  - <u>http://www.bigdata.com/rdf/geospatial/literals/v1#lat-lon-time</u>
- Rectangle and distance queries over geospatial coordinates, possibly combined with range scans over the temporal coordinate
- Geospatial queries are done through a custom SERVICE extension <u>http://www.bigdata.com/rdf/geospatial#search</u>
- Generic z-order index implementation for multi-dimensional range scans
- Latest v2.1.6 RC (Feb 2020)
- Available at <u>https://blazegraph.com/</u>

# MarkLogic Server

- NoSQL database that supports multi-model data representation
- JSON/XML documents, RDF triples and relational data
- Data access languages: JavaScript/XQuery, SPARQL and SQL
- Triple query languages: SPARQL, XQuery or JavaScript
- No GeoSPARQL
- Geospatial serialization vocabularies: GML, KML, GeoRSS and GeoJSON
- Geospatial types : Point, Box, Circle, Polygon, Complex Polygon (WKT), Linestring (WKT)
- Supports Cartesian, WGS84 coordinate systems and ETRS89 (European specific)
- Spatial indexes: (i) Point index, fast, in memory, point-only, (ii) Region path index, Geohash or R-tree, allows DE-9IM operations
- Latest v10.0-9.5 (Sep 2022)
- Available at <u>https://www.marklogic.com/</u>

# Part A.4 - Systems with Partial GeoSPARQL Support Stardog

Strabon Eclipse RDF4J



- Developed by Stardog. Supports:
- partial GeoSPARQL support (after 2018)
  - WKT serialization
    - points and rectangles, by default
    - All shapes, by installing JTS (Java Topology Suite <u>https://locationtech.github.io/jts/</u>)
  - Functions geof:relate, geof:distance, geof:within, geof:nearby and geof:area
- Spatial Indexing
  - spatial indexing, based on Lucene Spatial, geohash prefix tree (precision 11 for sub-meter accuracy)
  - approximate matching controlled with a precision parameter
  - precision specified upon database creation
- Supports WGS84 Geo Positioning RDF vocabulary (World Geodetic System 1984) <u>https://www.w3.org/2003/01/geo/wgs84\_pos</u>
- Provides support for Jena and Sesame APIs
- Latest v8.1.0 (Sep 2022)
- Closed source. Available at: <u>https://www.stardog.com</u>

# **Strabon**

#### Find more at: <u>http://www.strabon.di.uoa.gr/</u>



 [1] Kyzirakos, Kostis, Manos Karpathiotakis, and Manolis Koubarakis. "Strabon: a semantic geospatial DBMS." International Semantic Web Conference. Springer, Berlin, Heidelberg, 2012
 [2] Kyzirakos, Kostis, et al. "The Spatiotemporal RDF Store Strabon." SSTD 2013 Proceedings of the 13th International Symposium on Advances in Spatial and Temporal Databases - Volume 8098, 2013, pp. 496–500.

# **Strabon - Geospatial features**

Support for:

- stRDF and stSPARQL
- GeoSPARQL support
  - o Core
  - O Geometry Extension (WKT, GML)
  - Geometry Topology Extension (Simple Features, Egenhofer, RCC8, WKT, GML)
- Multiple Coordinate Reference Systems (CRS)
- Builds on Sesame RDBMS Sail
- Geospatial relational database as back-end (PostGIS, MonetDB)
- R-tree over GiST index (PostGIS)
- Latest v3.2.9. Available at <u>http://www.strabon.di.uoa.gr/</u>

# **Eclipse RDF4J**

- Java framework for processing and handling RDF data (former OpenRDF Sesame by Aduna).
- Based on Spatial4J and JTS libraries for geospatial reasoning.
- SAIL (Storage and Inference Layer), stackable architecture
- Memory store, NativeStore, Lucene SAIL and its derivates (the SolrSail and the ElasticSearchSail), (Sesame's RDBMS Sail removed), LMDB Store fast embeddable key-value based on the Symas Lightning Memory-Mapped Database (https://www.symas.com/Imdb)
- GeoSPARQL :
  - By default supported on any type of store (memory, native, etc)
  - The Lucene SAIL and its derivates (the SolrSail and the ElasticSearchSail) have built-in optimizations for geospatial querying.
  - Default spatially indexed property is geo:asWKT
  - LuceneSail configuration allows for customization of spatially indexed properties
    - Core
    - Geometry (partial) (WKT)
    - Geometry Topology Extension (Simple Feature, Egenhofer, RCC8, WKT)
    - Only WKT serializations
    - RDFS entailment
- Latest v4.2.0 (Sep 2022)
- Open source available at: <u>https://rdf4j.org</u>

# Part A.4 - Systems with Extensive GeoSPARQL Support

Parliament Oracle RDF Spatial and Graph AnzoGraph DB GraphDB Apache Jena GeoSPARQL

# Parliament

- Developed (2009) by Raytheon BBN Technologies (Dave Kolas).
- First GeoSPARQL implementation. Supports:
  - Core
  - Topology vocabulary
  - Geometry
  - Geometry Topology
  - Multiple CRSs
  - Both WKT and GML serializations
  - RDF entailment required for (geo:asWKT, geo:asGML)
- It uses BerkeleyDB as backend and Jena+ARQ as SPARQL processor
- Standard R-tree index
- Latest v2.8.1 (June 2022) features: separation between Parliament's software and data files, Java 8 and 11 support, offered as Docker image
- Open source available (since 2018) at : <u>https://github.com/SemWebCentral/parliament</u>



# Oracle Spatial and RDF Graph SPATIAL



- Developed by Oracle
- GeoSPARQL support
  - o Core
  - Topology Vocabulary Extension (Simple Features)
  - Geometry Extension (WKT 1.2.0, GML 3.1.1)
  - Geometry Topology Extension (Simple Features, WKT 1.2.0, GML 3.1.1)
  - RDFS Entailment Extension (Simple Features, WKT 1.2.0, GML 3.1.1)
- CRS support
- R-Tree as spatial index for up to 4 dimensions or composite B-tree index on point data for non spatial join operations
- Virtual RDF graphs (as of Oracle Spatial and Graph 12c R2)
- Latest version 21c (April 2022)
# AnzoGraph DB



- Massively parallel processing native graph database built for data harmonization and analytics
- Scales from single server to multiple servers in a cluster and cloud environments
- It holds the record for the fastest execution of the LUBM 1 Trillion Triple Benchmark (Google Cloud Platform, October 2016)
- GeoSPARQL support
  - o Core
  - Topology Vocabulary Extension (Simple Features, Egenhofer, RCC8)
  - Geometry Extension (WKT 1.x, GML 2.x)
  - <sup>O</sup> Geometry Topology Extension (Simple Features, Egenhofer, RCC8, WKT 1.x, GML 2.x)
  - RDFS Entailment Extension (Simple Features, Egenhofer, RCC8, WKT 1.x, GML 2.x)
- CRS support
- Geospatial aggregate functions provided through user-defined aggregate extensions
- Latest v2.5.10
- Closed source. Available at: <u>https://cambridgesemantics.com/</u>



- Former OWLIM. Based on RDF4J framework, developed by Ontotext.
- GeoSPARQL
  - Core
  - Topology Vocabulary Extension (Simple Features, Egenhofer, RCC8)
  - O Geometry Extension (WKT 1.x, GML 3.x)
  - Geometry Topology Extension (Simple Features, Egenhofer, RCC8, WKT 1.x, GML 2.x)
  - RDFS Entailment Extension (Simple Features, Egenhofer, RCC8, WKT 1.x, GML 2.x)
  - WKT serialization
- Multiple CRSs (v9.x onward)
- GeoSPARQL support through the GeoSPARQL plugin
  - Indexing algorithms, based on Lucene Spatial, quad or geohash prefix tree
  - Approximate matching controlled with a precision parameter
  - Reconfiguration of algorithm and precision allowed through SPARQL update statements
  - O Rebuilding GeoSPARQL index on demand
- Offers useful GeoSPARQL extensions based on the USeekMSail, i.e., ext:isValid(geometry), ext:area(geometry)
- Supports WGS84 Geo Positioning RDF vocabulary (World Geodetic System 1984) <u>https://www.w3.org/2003/01/geo/wgs84\_pos</u>
- Features 2 very fast bulk importers (LoadRDF, Preload)
- Latest v10.0.2 (Aug 2022)
- Closed source. Available at: <u>https://graphdb.ontotext.com/</u>

# Apache Jena GeoSPARQL

- Pure Java implementation which does not require any setup or configuration of any third party relational databases and geospatial extensions
- Full GeoSPARQL support
  - Core
  - Topology Vocabulary Extension (Simple Feature, Egenhofer and RCC8)
  - Geometry Extension (WKT, GML 2.0)
  - Geometry Topology Extension (Simple Feature, Egenhofer, RCC8, WKT, GML 2.0)
  - RDFS Entailment Extension (Simple Feature, Egenhofer, RCC8, WKT, GML 2.0)
  - O Query Rewrite (Simple Feature, Egenhofer, RCC8, WKT, GML 2.0)
- All indexing and caching is performed during query execution
- 3 indexes (Geometry Literal, Geometry Transform, Query Rewrite)
- Also supports WGS84 Geo Positioning RDF vocabulary (World Geodetic System 1984)
- Latest v3.16.0 (Jul 2020) as a maven artifact org.apache.jena:jena-geosparql:3.16.0
- Open source available at: <u>https://github.com/galbiston/geosparql-jena</u>

# Part A.5 – Distributed RDF Stores with GeoSPARQL Support Strabo2

# Strabo2

- Apache Spark Java implementation for Hadoop clusters
- Extends Ontop-spatial for GeoSPARQL to Spark-SQL translation
- Geospatial capabilities provided by Apache Sedona (former GeoSpark)
- Apache Hive as persistence layer with Parquet storage format
- Vertical Partitioning used as the logical partitioning strategy
- GeoSPARQL support: Simple Feature family, WKT serialization
- Open source available at: <u>https://github.com/db-ee/Strabo-2</u>



*ISWC 2022: Main Track 6b: Querying, 26<sup>th</sup> October 2022* **Strabo 2: Distributed Management of Massive Geospatial RDF Datasets** *Dimitris Bilidas, Theofilos Ioannidis, Nikos Mamoulis and Manolis Koubarakis* 

# Part B - Q&A or Geographica 2 benchmark



Source code, Datasets, Query sets and most of the results are available on the following 2 web sites:

- http://geographica.di.uoa.gr/
- http://geographica2.di.uoa.gr/

# **Geographica 2**

- Purpose: evaluate RDF stores supporting GeoSPARQL and stSPARQL
- Workloads:
  - Real world (micro and macro benchmarks)
  - Synthetic
  - Scalability: OSM+Corine Land Cover Reference Dataset 1 (RD-1)
- Datasets: GAG, CLC, LGD (OSM), GeoNames, DBpedia, Hotspots, Synthetic-512, Synthetic-Points-1024, Census, Scalability (OSM+CLC RD-1: 10K, 100K, 1M, 100M, 500M triples)
- Scenarios: Micro, Macro (Reverse geocoding, Map search & browsing, Rapid mapping for fire monitoring, Geocoding, Computation of Statistics), Scalability
- Systems: uSeekM, Parliament, Strabon, System X (Par, Ser), GraphDB, RDF4J (NativeSail, LuceneSail+NativeSail)
- Limited functionality: VOS (Virtuoso OpenLink Server), System Y in addition to the 6 (8 variants) other systems against points only versions of Real World and Synthetic datasets

*Ioannidis Theofilos, Garbis George, Kyzirakos Kostis, Bereta Konstantina, & Koubarakis Manolis (2021). "Evaluating geospatial RDF stores using the benchmark Geographica 2". Journal on Data Semantics, 10(3), 189-228.* 

## **Geographica 2 –** Workload/Dataset matrix



# **Geographica 2 –** Workload/System matrix

| <b>\</b>            | WOF                  | SUT SUT                                  | 1     | 1     | 5/8  | 1   |     | 7   | 1  | 1    | 100/2        |      |
|---------------------|----------------------|------------------------------------------|-------|-------|------|-----|-----|-----|----|------|--------------|------|
|                     | 1000                 |                                          | 1 3 3 | V/2 3 | 10 3 | 134 | 120 | 1/3 | /3 | 15 3 | 12 2         | 12 2 |
|                     |                      | Non-topological functions (6)            | Ŷ     | Y     | Y    | Y   | Y   |     |    | Y    | Y            | Y    |
|                     | - <del>1</del>       | Spatial selections (11)                  | Y     | Y     | Y    | Y   | ¥   |     |    | Y    | Y            | Y    |
|                     |                      | Spatial joins (10)                       | Y.    | Y.    | Y -  | Y   | Y   |     |    | Y    | Y            | Ϋ́   |
| 5                   |                      | Spatial appregates (2)                   | ¥.    | Y.    | Y :  | Y   | Y   |     |    | Y    | Y            | Y    |
| 5                   |                      | Reverse geocoding (2)                    | Y.    | Y     | Y.   | ¥.  | ¥.  |     |    | *    | Y            | Y    |
| 8                   | 2.23                 | Map Search and Browsing (3)              | Y.    | Y.    | Y.   | ¥.  | Y.  |     |    | ¥.   | Y            | Y    |
| æ                   | Allecro              | Rapid Mapping for<br>Fire Monitoring (6) | ٧     | ۷     | ۲    | ٧   | Y   |     |    | Y    | ¥            | Y    |
|                     |                      | Geocoding (2)                            | Y     | Y     | Y    | Y   | Y   |     |    | Y    | Y            | Y    |
| -                   |                      | Compute statistics (3)                   | Y     | Y     | Y    | Y   | Y   |     |    | ¥.   | Y            | Y    |
| the                 | Micro                | Spatial selections (2)                   | Y     | Y     | X    | Ŷ   | ٣   | Y   | Y  | Y    | Y            | Y    |
| 100                 |                      | Spatial joins (1)                        | ¥.    | ¥     | Ŷ    | Y   | Υ.  | Y   | Y  | ¥    | Y            | Y    |
| te                  |                      | Selection Intersects (12)                | Y     | Y.    | Y    | Y   | ¥.  |     |    | Y    | Y            | Y    |
|                     |                      | Selection Within (10)                    | Y     | Y     | Y    | Y   | Y   |     |    | Y    | Y            | Y    |
| ÷                   |                      | Join Intersects (4)                      | Y     | Y.    | Y    | Y   | ¥.  |     |    | Y    | Y            | Y    |
| La Contra           |                      | Join Touches (4)                         | Y     | Y.    | Y    | Y   | Y.  |     |    | Y    | Y            | Y    |
|                     |                      | Join Within (4)                          | Y     | Y     | Y.   | Y   | Y.  |     |    | Y.   | Y            | Y    |
| Synthetic<br>points |                      | Selection Distance (12)                  | Y     | y.    | y:   | Y   | Y   | y.  | Y  | Y    | y            | Y    |
| Scalability         | Spatial<br>selection | 9C1                                      |       |       | Y    |     |     |     |    | . X. | : <b>Y</b> : | y.   |
|                     | Spatial<br>joins     | SC2 (intensive intersects)               |       |       | ۷    |     |     |     |    | Y    | Y            | Y    |
|                     |                      | SC3 (relaxed intersects)                 |       |       | Y    |     |     |     |    | Y    | Y            | Y    |

## **Geographica 2 -** Scalability Workload

- **Purpose**: the scalability experiment aims at discovering the limits of the systems under test as the number of triples in the dataset increase
- Method: Each selected system is tested against six increasingly bigger, proper subsets of a big real world reference geospatial dataset. For each system-dataset combination we measure:
  - the repository size on disk,
  - the bulk loading time taking into consideration the limitations of loading methods of each system and
  - the response time in three queries which represent a spatial selection, a heavy spatial join with higher spatial selectivity and a lighter spatial join with lower spatial selectivity
  - Systems: Strabon, GraphDB, RDF4J

## **Geographica 2 -** Scalability Reference Dataset characteristics

| Datasets | Country      | Triples (M) | Size (MB) |  |  |
|----------|--------------|-------------|-----------|--|--|
|          | Wales        | 6.56        | 1,206     |  |  |
|          | Scotland     | 15.78       | 2,913     |  |  |
| OSM      | Greece       | 15.22       | 2,877     |  |  |
| OSM      | N. Ireland   | 15.27       | 3,240     |  |  |
|          | England      | 104.21      | 18,965    |  |  |
|          | Germany      | 326.48      | 59,002    |  |  |
| CLC-2012 | 39 countries | 16.60       | 11,283    |  |  |
|          | Totals       | 483.52      | 99,486    |  |  |

## **Geographica 2 -** Scalability Datasets basic characteristics

| Dataset | # of Features | # of Points | # of Lines | # of Polygons |
|---------|---------------|-------------|------------|---------------|
| 10K     | 1,135         | 587         | 0          | 900           |
| 100K    | 12,166        | 6,623       | 4,239      | 2,531         |
| 1M      | 118,161       | 46,781      | 45,238     | 29,200        |
| 10M     | 1,038,739     | 317,865     | 328,630    | 427,842       |
| 100M    | 10,259,959    | 904,677     | 2,058,386  | 7,553,440     |
| 500M    | 48,623,878    | 5,520,767   | 15,771,932 | 23,390,220    |

### **Geographica 2** - Scalability Query SC1 (Spatial Selection)



## **Geographica 2** - Scalability Query SC1 (Spatial Selection)

#### SC1\_Geometries\_Intersects\_GivenPolygon: Find all geometries that intersect with the given polygon

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>
PREFIX geo: <http://www.opengis.net/ont/geosparql#>
PREFIX lgd: <http://data.linkedeodata.eu/ontology#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT ?s1 ?o1

WHERE {

?s1 geo:asWKT ?o1 .

FILTER(geof:sfIntersects(?o1, "POLYGON((23.708496093749996 37.95719224376526,22.906494140625 40.659805938378526,11.524658203125002 48.16425348854739,-0.1181030273437499 51.49506473014367,-3.2189941406250004 55.92766341247031,-5.940856933593749 54.59116279530599,-3.1668090820312504 51.47967237816337,23.708496093749996 37.95719224376526))"^^<http://www.opengis.net/ont/geospargl#wktLiteral>)).

### **Geographica 2 - Scalability Value distribution of** lgo:has\_code property

lgo:has\_code > <http://data.linkedeodata.eu/ontology#has\_code>

| lgo:has_code                              | lgo:has_fclass                   | 10K | 100K  | 1M     | 10M     | 100M      | 500M       |
|-------------------------------------------|----------------------------------|-----|-------|--------|---------|-----------|------------|
| 1001<br>(used in SC2, SC3)                | city                             | 1   | 1     | 7      | 14      | 84        | 232        |
| 5601                                      | railway_station                  | 15  | 284   | 284    | 669     | 1,194     | 8,449      |
| 5621                                      | bus_stop                         | 4   | 4,416 | 4,416  | 22,337  | 35,555    | 503,455    |
| 5622                                      | bus_station                      | 36  | 46    | 46     | 98      | 425       | 2,647      |
| 5641                                      | taxi                             | 7   | 43    | 43     | 217     | 886       | 5,798      |
| 5661                                      | ferry_terminal                   | 4   | 18    | 18     | 153     | 583       | 1,508      |
| 5601,5621,5622,5641,5661<br>(used in SC3) |                                  | 66  | 4,807 | 4,807  | 23,488  | 38,643    | 521,857    |
| (5001-5999) - {5260}<br>(used in SC2)     | transportation<br>except parking | 66  | 4,875 | 11,412 | 264,199 | 1,978,632 | 16,151,652 |

### **Geographica 2 -** Scalability Query SC2 (Spatial Join)

#### SC2\_Intensive\_Geometries\_Intersect\_Geometries: Find all transportation-related features (except parking) within cities

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>
PREFIX geo: <http://www.opengis.net/ont/geosparql#>
PREFIX lgo: <http://data.linkedeodata.eu/ontology#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

```
SELECT ?s1 ?s2
WHERE {
    ?s1 geo:hasGeometry [ geo:asWKT ?o1 ] ;
    lgo:has_code "1001"^^xsd:integer .
    ?s2 geo:hasGeometry [ geo:asWKT ?o2 ] ;
    lgo:has_code ?code2 .
    FILTER(?code2>5000 && ?code2<6000 && ?code2 != 5260) .
    FILTER(geof:sfIntersects(?o1, ?o2)).</pre>
```

### **Geographica 2 -** Scalability Query SC3 (Spatial Join)

**SC3\_Relaxed\_Geometries\_Intersect\_Geometries**: Find all bus stops, bus stations, railway stations, taxis and ferry terminals within cities

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>
PREFIX geo: <http://www.opengis.net/ont/geosparql#>
PREFIX lgo: <http://data.linkedeodata.eu/ontology#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

```
SELECT ?s1 ?s2
WHERE {
    ?s1 geo:hasGeometry [ geo:asWKT ?o1 ] ;
    lgo:has_code "1001"^^xsd:integer .
    ?s2 geo:hasGeometry [ geo:asWKT ?o2 ] ;
    lgo:has_code ?code2 .
    FILTER(?code2 IN (5622, 5601, 5641, 5621, 5661)) .
    FILTER(geof:sfIntersects(?o1, ?o2)).
```

## **Geographica 2 -** Scalability results



# Transformation of geospatial data



# Transforming to RDF

- Direct mapping approach became a W3C recommendation in 2012
  - tables becomes classes
  - tables' attributes are mapped to RDF properties that represent the relation between subject and object
  - SQL table and column identifiers compose RDF IRIs in the direct graph

# **Mapping Languages**

#### R2RML

- A language for expressing customized mappings from relational databases to RDF graphs
- Became W3C recommendation in 2012.
- Express transformation of existing relational data into the RDF data model.

### RML

- The RDF Mapping language (RML) is a generic mapping language.
- It can express rules that map data with heterogeneous structures to RDF graphs.
- RML is defined as a superset of R2RML and allows the expression of rules that map relational and semi-structured data (e.g., XML, JSON) into RDF graphs.

## **RML Example**

#### Input Data

id,stop,latitude,longitude 6523,25,50.901389,4.484444 @prefix rr: <http://www.w3.org/ns/r2rml#>.
@prefix rml: <http://semweb.mmlab.be/ns/rml#>.
@prefix ql: <http://semweb.mmlab.be/ns/ql#>.
@prefix transit: <http://vocab.org/transit/terms/>.
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.
@prefix wgs84\_pos:
<http://www.w3.org/2003/01/geo/wgs84\_pos#>.
@base <http://example.com/ns#>.

<#AirportMapping> rml:logicalSource [ rml:source "Airport.csv" ; rml:referenceFormulation ql:CSV

rr:subjectMap [ rr:template "http://airport.example.com/{id}"; rr:class transit:Stop

rr:predicateObjectMap [ rr:predicate transit:route; rr:objectMap [ rml:reference "stop"; rr:datatype xsd:int

];

1;

rr:predicateObjectMap [ rr:predicate wgs84\_pos:lat; rr:objectMap [ rml:reference "latitude"

rr:predicateObjectMap [ rr:predicate wgs84\_pos:long; rr:objectMap [ rml:reference "longitude"

#### **RML Mapping**

#### **Output Triples**

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix transit: <http://vocab.org/transit/terms/>.
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.
@prefix wgs84\_pos:
<http://www.w3.org/2003/01/geo/wgs84\_pos#>.

<http://airport.example.com/6523> rdf:type transit:Stop. <http://airport.example.com/6523> transit:route "25"^^xsd:int. <http://airport.example.com/6523> wgs84\_pos:lat "50.901389". <http://airport.example.com/6523> wgs84\_pos:long "4.484444".

https://rml.io/specs/rml/#string-template

# **RML/R2RML Term Maps**

- A **Term Map** is a function that generates an RDF term from a logical reference.
- Term maps are used to generate the subjects, predicates and objects of the RDF triples
  - subject maps
  - predicate maps
  - object maps

- A **Term Map** must be exactly one of the following:
  - a constant-valued term map,
  - a reference-valued term map,
  - a template-valued term map.

# **RML/R2RML Term Maps**



# **Tools/Methods**

- The **Geometry2RDF** was one of the first tools that enabled users to transform spatially enabled RDB systems into RDF graphs.
- K. Chentout et al presented how R2RML can be combined with a spatially-enabled relational database in order to transform geospatial data into RDF
- **TripleGeo** is a tool for transforming geospatial features from various sources into RDF graphs.
  - Supports complex formats such as OpenStreetMap data and certain INSPIRE
  - Parallelized executions based on multi-threading and Apache Spark

*K. Chentout, A.A. Vaisman, Adding spatial support to R2RML mappings, in: OTM Workshops, in: Lecture Notes in Computer Science, vol. 8186, Springer, 2013.* 

Kostas Patroumpas et al. "Exposing Points of Interest as Linked Geospatial Data". In:Proceedings of the 16th International Symposium on Spatial and Temporal Databases, SSTD2019

TripleGeo Repo: https://github.com/SLIPO-EU/TripleGeo

# **The tool GeoTriples**

- GeoTriples is a semi-automated tool that enables the automatic transformation of geospatial data into RDF graphs
- The transformation process comprises three steps.
  - 1. GeoTriples generates automatically extended R2RML or RML mappings
  - 2. As an optional second step, the user may revise these mappings according to her needs
  - 3. Finally, GeoTriples processes these mappings and produces an RDF graph.
- GeoTriples supports the transformation of Spatially-enabled relational databases, CSV, GeoJSON, ESRI Shapefiles, KML and XML documents

Kostis Kyzirakos et al. "GeoTriples: Transforming geospatial data into RDF graphs using R2RML and RML mappings". In:J. Web Semant.52-53 (2018)

Repo: https://github.com/LinkedEOData/GeoTriples

# **RML/R2RML Extension**

- When transforming geospatial data into RDF we may need to compute on the fly values that are not explicitly present in the source data (e.g. the dimension of a given geometry, the length of a line, the area of a polygon, etc.)
- We may also want to **compute on the fly which topological, directional or distance relations** hold between two spatial objects
- We have extended RML/R2RML with a **Transformation-valued** term map, that generates an RDF term by applying SPARQL extension function on one or more term maps.
- A transformation-valued term map has exactly one rrx:function property and one rrx:argumentMap property.
- The **rrx:argumentMap** property has as range an rdf:List of term maps that define the arguments to be passed to the transformation function.

```
rr:predicateObjectMap [
    rr:predicateMap [ rr:constant ogc:asWKT ];
    rr:objectMap [
        rr:datatype ogc:wktLiteral;
        rrx:function geof:asWKT;
        rrx:argumentMap ( [ rml:reference "geometry"; ] );
    ];
];
```

```
rr:predicateObjectMap [
    rr:predicateMap [ rr:constant exp:hasBuffer];
    rr:objectMap [
        rrx:function geof:buffer;
        rrx:argumentMap (
            [ rml:reference "geometry"; ]
            [ rr:constant "10"; rr:datatype xsd:integer]
            [rr:constant uom:metre]
        );
    ];
```

139

# **RML/R2RML Extension**

- We can assert topological relations using the topology vocabulary of GeoSPARQL
- A **referencing object map** is a map that allows a predicate—object map to generate as objects the subjects of another triples map.





# **GeoTriples System Architecture**

GeoTriples comprises three main components: the Mapping Generator, the Mapping Processor and the stSPARQL/GeoSPARQL Evaluator.

#### **Mapping Generator**

The mapping generator is given as input a data source and creates automatically an R2RML/RML mapping document, depending on the type of the input. The user may edit the generated mapping document to make it comply with her requirements.

#### **Mapping Processor**

The mapping processor receives as input the mapping document. Based on the term maps, the Mapping Processor generates the final RDF graph, which can be manifested in any of the popular RDF syntaxes such as Turtle, RDF/XML, Notation3 or N-Triples.

#### stSPARQL/GeoSPARQL Evaluator

This component evaluates an stSPARQL/GeoSPARQL query over a relational database given an R2RML mapping.

## **GeoTriples System Architecture**



# **Mappings Generation**

- The mappings produced by GeoTriples consists of **two logical sources**:
  - non-geometric (thematic) data,
  - geospatial information
- The subjects are defined by combining a URI template with a unique identifier
- For each field of the input data source, GeoTriples generates an RDF predicate according to the name of the field and a predicate-object map
- The triples map that handles geospatial information contains a serialization of the geometric information according to the WKT format
- The generated RDF Graph will be compliant with the GeoSPARQL vocabulary

# **Mappings Generation**

@prefix rr: <http://www.w3.org/ns/r2rml#>.
@prefix rml: <http://semweb.mmlab.be/ns/rml#> .
@prefix ql: <http://semweb.mmlab.be/ns/ql#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.
@prefix rrx: <http://www.w3.org/ns/r2rml-ext#>.
@prefix rrxf: <http://www.w3.org/ns/r2rml-ext/functions/def/>.
@prefix ogc: <http://www.opengis.net/ont/geosparql#>.
@prefix onto: <http://example.di.uoa.gr/ontology#>.

```
<#shp_example_Geometry>
rml:logicalSource [
         rml:source "/path/to/shapefile/file.shp";
         rml:referenceFormulation gl:SHP;
         rml:iterator "shp iterator";
];
rr:subjectMap [
         rr:template "http://example.di.uoa.gr/Geometry/{GeoTriplesID}";
         rr:class ogc:Geometry;
];
rr:predicateObjectMap [
         rr:predicateMap [ rr:constant ogc:asWKT ];
         rr:objectMap [
                   rr:datatype ogc:wktLiteral;
                   rrx:function rrxf:asWKT:
                  rrx:argumentMap ( [ rml:reference "geometry"; ] );
<#shp example>
rml:logicalSource [
         rml:source "/path/to/shapefile/file.shp";
         rml:referenceFormulation gl:SHP;
         rml:iterator "gis osm natural free 1";
];
rr:subjectMap [
         rr:template "http://example.di.uoa.gr/id/{GeoTriplesID}";
         rr:class onto:gis_osm_natural_free_1;
];
rr:predicateObjectMap [
         rr:predicateMap [ rr:constant onto:hasName ];
         rr:objectMap [
                   rr:datatype xsd:string;
                  rml:reference "name";
];
rr:predicateObjectMap [
         rr:predicateMap [ rr:constant ogc:hasGeometry ];
         rr:objectMap [
                   rr:template "http://example.di.uoa.gr/Geometry/{GeoTriplesID}";
```

144

# **Mapping Processor**

- If the input mapping is an R2RML GeoTriples uses an extended version of D2RQ
- If the input mapping is an RML, GeoTriples uses an extended version of the iMinds processor.
- The transformation follows three main steps
  - 1. Extracts the content of the logical source(e.g. using a SELECT query)
  - 2. Defines Subject based on the Term map of the Subject map
  - 3. Iterate the entities and forms the triples based on the Predicate object maps

# **GeoTriples-Spark**

- We extended GeoTriples to run on top of Apache Spark
- It can run in standalone or in any cluster that supports Apache Spark
- GeoTriples-Spark is capable of transforming large amount of data into RDF graphs
- RML Mappings
- It supports the transformation of CSV, GeoJSON and ESRI Shapefiles





- Apache Spark is an open-source, distributed, general-purpose, cluster-computing framework.
- Spark uses a master/worker architecture.
- There is a Driver (JVM process) that talks to a single coordinator called Master which manages Workers in which Executors (JVM processes) run .

#### RDD

- **Resilient Distributed Dataset (RDD)** is an immutable distributed collection of elements of data.
- The data is partitioned across machines in the cluster, which can be operated in parallel using transformations and actions.
- **Dataframes** and **Datasets** are immutable collections of data in which is organized into named columns.
Architecture



- The Input data are loaded as multiple partitions, distributed across the cluster
- The RML mappings are extracted from the RML file and broadcasted to all servers
- Each partition is transformed into RDF triples by an RML processor
- The number of concurrent tasks is defined by the number of partitions and the number of the Executors (and their cores)
- There is no need for intermediate caching
- Except the broadcasting of the RML mappings, no further data shuffling occurs.
- Each partition is transformed independently from the rest.

### **CSV: Transformation and Evaluation**

- CSV files are considered text files
- The geometry feature in CSV files is expected to be in Well Known Text (WKT)

| Dataset   | Size  | #Records | #Produced<br>Triples |
|-----------|-------|----------|----------------------|
| 1GB.csv   | 1GB   | 5M       | 58M                  |
| 10GB.csv  | 10GB  | 52M      | 540M                 |
| 100GB.csv | 100GB | 0.5B     | 5B                   |
| 250GB.csv | 250GB | 1.3B     | 13B                  |

| Dataset       | Times<br>Ioaded | Input Size  | #Executors | Output Size    | #Execution time<br>(m) |
|---------------|-----------------|-------------|------------|----------------|------------------------|
| 1GB.csv       | 1               | 1GB         | 2          | 7.7GB          | 1                      |
| 10GB.csv      | 1               | 10GB        | 21         | 83.4GB         | 1.6                    |
| 100GB.cs<br>v | 1               | 100GB       | 41         | 840.1GB        | 3.3                    |
| 250GB.cs<br>v | 1               | 250GB       | 60         | 2.1 <b>TB</b>  | 6.6                    |
| 250GB.cs<br>v | 2               | 500GB       | 65         | 4.1 <b>TB</b>  | 13                     |
| 250GB.cs<br>v | 4               | 1 <b>TB</b> | 70         | 8.3 <b>TB</b>  | 26                     |
| 250GB.cs<br>v | 8               | 2 <b>TB</b> | 80         | 16.6 <b>TB</b> | 50                     |

### **Scalability Experiments**

#### Scalability with varying input size

Using 16 processes



#### Scalability with varying number of Executor cores

Speed Up - 10GB Input



#### **ESRI Shapefile: Transformation and Evaluation**

- ESRI Shapefile is a file format for storing spatial data, and consist of multiple file (.shp, .shx, .dbf)
- **GeoSpark** is used for loading the input Shapefile into a Spark Dataset
- GeoSpark is an in-memory cluster computing framework developed by the Data Systems Lab, in order to support spatial data types, indexes, and processing of large-scale spatial data.
- It is important to mention that **GeoSpark always loads the input shapefile into a single partition** as it merges all the related component files of shapefile into one.
- Therefore, each Task have to transform a whole shapefile into RDF.

*Jia Yu, Jinxuan Wu, Mohamed Sarwat: GeoSpark: a cluster computing framework for processing large-scale spatial data. SIGSPATIAL/GIS 2015* 

### **ESRI Shapefile: Transformation and Evaluation**

- There is a 2 GB size limit for any shapefile component file, which translates to a maximum of roughly 70 million point features.
- Therefore GeoTriples-Spark provides the option to load multiple shapefiles and transform them at once, by specifying a folder containing shapefile folders.
- GeoTriples-Spark loads each shapefile into an individual Spark Dataset and in the end it unites them into one.
- Otherwise, if the user want to transform a single big shapefile, it can repartition it into multiple partitions which will be transformed in parallel.

#### **ESRI Shapefile: Transformation and Evaluation**

| Dataset        | .shp size | .dbf size | Total size | #Records | #Produced Triples |
|----------------|-----------|-----------|------------|----------|-------------------|
| RoadSystem_AUS | 381.1MB   | 278.9MB   | 672.4 MB   | 1615868  | 17165376          |
| RoadSystem_GER | 1.7GB     | 1.9GB     | 3.7 GB     | 11107532 | 115146843         |

| Dataset        | Times | Input Size | #Executors | Output Size | Execution Time (m) |
|----------------|-------|------------|------------|-------------|--------------------|
| RoadSystem_AUS | 2     | 1.3GB      | 1          | 5.5 GB      | 1.2                |
| RoadSystem_AUS | 16    | 9.8GB      | 3          | 41.6 GB     | 2.5                |
| RoadSystem_AUS | 153   | 100.5 GB   | 20         | 427.7 GB    | 4.3                |
| RoadSystem_AUS | 381   | 250.2 GB   | 30         | 1068.6 GB   | 9.9                |
| RoadSystem_GER | 136   | 502.9 GB   | 15         | 2.5 TB      | 17                 |
| RoadSystem_GER | 258   | 1TB        | 27         | 5.1 TB      | 34                 |

### **ESRI Shapefile: Transformation and Evaluation**

#### **Transformation of ESRI Shapefiles**



### **GeoTriples-Spark and TripleGeo-Spark**



#### K Patroumpas, D Skoutas, et al., Exposing Points of Interest as Linked Geospatial Data. SSTD 2019

### Thank you!

### **Questions ?**

# Interlinking geospatial RDF data



### **Geospatial Interlinking in action**



### **Geospatial Interlinking**

Input:

- A topological relation **R**
- A source dataset of geometries **S**
- A target dataset of geometries *T* Types of Geometries:
  - LineStrings
  - Polygons

Output:

• All pairs  $(s,t) \in S \times T$  such that R(s,t) = true

Challenges:

- quadratic time complexity, **O(n<sup>2</sup>)**
- time-consuming topological relations over complex geometries

### **Filtering – Verification Framework**

Two-step procedure to reduce the quadratic time complexity:



## Filtering, a.k.a. Space Tiling

Involves three steps:

- 1. We define an *Equigrid* on Earth's surface
- 2. We index geometries according to their *Minimum Bounding Rectangle*
- 3. We define as *candidate pairs* only the geometries that share at least one tile

Advantages:

- Exact process
- Linear time complexity O(n)
- Significant gains in efficiency

### **Space Tiling Example**



### **Space Tiling Example - Equigrid**



### **Space Tiling Example - MBR indexing**



### **Space Tiling Example – Candidate Pairs**

Just **3** pairs:

 $g_1 - g_2$  $g_1 - g_3$  $g_3 - g_4$ 

**50%** lower than the **6** pairs of the brute-force approach.



### Verification

Two different types:

•

•

•

•

- 1. Proximity relations (such as dbp:near) with a distance threshold
  - e.g., find all cities from **S** that are less than 1km away from any river in **T**
- 2. Topological relations according to the Dimensionally Extended 9-Intersection Model (DE9IM)



### ORCHID

#### Filtering:

- Static space tiling
- Granularity for width and height = θ / R / a

• a = 1

#### Verification:

- Hausdorff distance  $hd(s,t) = max_{si \in S} \{min_{ti \in T} \{\delta(s_i,t_j)\}\} \le \theta$
- Optimizations for efficient computation:
  - Bounding circles
  - Cauchy-Swarz Inequality for Distance Approximation

Open-source implementation (<u>https://github.com/dice-group/LIMES</u>)

Axel-Cyrille Ngonga Ngomo: ORCHID - Reduction-Ratio-Optimal Computation of Geo-spatial Distances 168 for Link Discovery. International Semantic Web Conference, 2013: 395-410

### **Silk-spatial**

#### Filtering:

- **Static** space tiling
- Granularity for width and height =  $1/a^{\circ 2}$ 
  - a = 10

Verification:

- DE9IM topological relations single relation per run
- Massive parallelization (Apache Hadoop)

Open-source implementation (https://github.com/silk-framework/silk)

Panayiotis Smeros, Manolis Koubarakis: Discovering Spatial and Temporal Links among RDF Data. LDOW@WWW 2016

### RADON

#### Filtering:

- Swapping strategy
- Dynamic space tiling
  - Width =  $\frac{1}{2}$  · (average<sub>s∈S</sub>(s.width) + average<sub>t∈T</sub>(t.width))
  - Length =  $\frac{1}{2}$  · (average<sub>s∈S</sub>(s.length) + average<sub>t∈T</sub>(t.length))

#### Verification:

- DE9IM topological relations single relation per run
  - Relation-based optimizations
  - Hash-based redundancy elimination
- Multi-core parallelization

Open-source implementation (<u>https://github.com/dice-group/LIMES</u>)

Mohamed Ahmed Sherif, Kevin Dreßler, Panayiotis Smeros, Axel-Cyrille Ngonga Ngomo: Radon - Rapid <sup>170</sup> Discovery of Topological Relations. AAAI 2017: 175-181

### stLD

#### Filtering:

- Static Index
- Variety of approaches (e.g., R-Trees, Equigrid, Hierarchical Grid)
- Indexes exclusively the source dataset S
- MaskLink algorithm

### Verification:

- Both topological and proximity relations single relation per run
- Massive parallelization (Apache Flink)
- Suitable for streams

Implementation not available.

Georgios M. Santipantakis, Apostolos Glenis, Christos Doulkeridis, Akrivi Vlachou, George A. Vouros: stLD: towards a spatio-temporal link discovery framework. SBD@SIGMOD 2019: 4:1-4:6 Georgios M. Santipantakis, Christos Doulkeridis, George A. Vouros, Akrivi Vlachou: MaskLink: Efficient Link Discovery for Spatial Relations via Masking Areas. CoRR abs/1803.01135 (2018)



### **GIA.nt: Geospatial Interlinking At large – Part A**

#### Improving RADON's Filtering:

- Dynamic space tiling, based exclusively on the source dataset S
  - Width = average  $s \in S$  (s.width)
  - Length = average  $s \in S$  (s.length)
- No dataset swapping
- Target dataset (=largest input dataset) read one by one from the **disk**
- Inherent removal of redundant (i.e., repeated) geometry pairs
  - Easily parallelizable in MapReduce, due to its geometry-centric functionality

Memory requirements
---lower by >50%

Lower running time

### **GIA.nt: Geospatial Interlinking At large – Part B**

#### Improving RADON's **Verification**:

• Holistic Geospatial Interlinking:

Run-time - lower by >80%

Simultaneous estimation of all DE9IM topological relations → Intersection Matrix

$$\text{DE9IM}(a,b) = \begin{bmatrix} \dim(I(a) \cap I(b)) & \dim(I(a) \cap B(b)) & \dim(I(a) \cap E(b)) \\ \dim(B(a) \cap I(b)) & \dim(B(a) \cap B(b)) & \dim(B(a) \cap E(b)) \\ \dim(E(a) \cap I(b)) & \dim(E(a) \cap B(b)) & \dim(E(a) \cap E(b)) \end{bmatrix}$$



### **Progressive Geospatial Interlinking**

Ideal for applications with limited resources:

• Temporal or computational (e.g., Amazon Lambda functions)

Requirements with respect to batch approaches [1]:

- 1. Same Eventual Quality
- 2. Improved Early Quality
  - Measured through Progressive Geometry Recall (PGR)



174

#### Solution:



[1] Steven Euijong Whang, David Marmaros, Hector Garcia-Molina: Pay-As-You-Go Entity Resolution. IEEE Trans. Knowl. Data Eng. 25(5): 1111-1124 (2013)

### **Progressive GIA.nt**

Input:

• Budget B + source dataset + target dataset

Filtering:

• Same as batch GIA.nt

### Scheduling:

- Priority queue with top-B weighted candidate pairs based on either of the following functions:
  - Co-occurrence Frequency (CF): #common tiles
  - Jaccard Similarity (JS): normalized CF
  - Pearson's  $\chi^2$  test ( $\chi^2$ ): degree to which **s** and **t** occur independently in tiles

Verification:

Processes the pairs of the priority queue in decreasing weight

George Papadakis, Georgios M. Mandilaras, Nikos Mamoulis, Manolis Koubarakis. Progressive, Holistic Geospatial <sup>175</sup> Interlinking. WWW 2021: 833-844

higher scores → more likely to satisfy at least one topological relation

### **Dynamic Progressive Geospatial Interlinking**

Improved Static Progressive Geospatial Interlinking in three ways:

- New weighting schemes based on the complexity of geometries.

$$MBR(s,t) = \frac{MBR(s \cap t)}{MBR(s \cup t)} = \frac{MBR(s \cap t)}{MBR(s) + MBR(t) - MBR(s \cap t)}$$

Inverse sum of points → higher time efficiency

 $ISP(s,t) = \frac{1}{p(s)+p(t)}$ , where p(g) denotes the number of boundary points

- Composite weighting schemes → higher effectiveness, more deterministic behavior
  - the primary one is used for scheduling all pairs
  - the secondary one is used for resolving the ties

#### Dynamic Progressive GIA.nt

George Papadakis, Georgios M. Mandilaras, Nikos Mamoulis, Manolis Koubarakis. Static and Dynamic Progressive <sup>176</sup> Geospatial Interlinking. ACM TSAS (to appear)

### **Supervised Progressive Geospatial Interlinking**

Drawbacks of Progressive Geospatial Interlinking:

- Store the top-BU weighting pairs in main memory
- Might be hard to fine-tune BU
- Considers at most two sources of evidence, i.e., composite weighting schemes



- 1. Filtering  $\rightarrow$  as in (Progressive) GIA.nt
- 2. Supervised Filtering
  - Classify candidate pairs into "likely related pairs" & "unlikely related pairs" using a feature vector
- 3. Verification  $\rightarrow$  as in Batch GIA.nt

## **Supervised Filtering**

Challenges:

- Define generic, effective & efficient features
- Avoid any human intervention
- Address class imbalance
- Minimize the feature and the training set  $\rightarrow$  simple & efficient classification models

Approach outline:

- Self-supervised learning based on undersampling
- 4 categories of features
  - 1. Area-based (source/target/intersection MBR area)
  - 2. Boundary-based (source/target #boundary points and boundary length)
  - 3. Grid-based (#common tiles, #tiles intersecting the target MBR)
  - 4. Candidate-based (total/distinct/real candidates per source/target geometry)
  - 2 sub-categories in each case:
    - Atomic features
    - Composite features

### **Future directions**

- Proactive Geospatial Interlinking
  - Terminate Geospatial Interlinking automatically as soon as recall exceeds a desired level → minimize the time required for processing voluminous datasets
- Generalize to 3-dimensional data
  - Silk-spatial: 3<sup>rd</sup> dimension = time
  - stLD: 3<sup>rd</sup> dimension = height (e.g., aviation data)

- Improve Intersection Matrix computation
  - O(n · logn) [1]
  - Fine-grained MBR

[1] Edward P. F. Chan, Jimmy N. H. Ng: A General and Efficient Implementation of Geometric Operators and Predicates. SSD 1997: 69-93





### **Thank you!**

**Questions?** 

# Geospatial knowledge graphs



### **Knowledge Graphs**

### **Knowledge graphs:**

- Directed graphs
- Represent knowledge about:
  - World objects (nodes of the graph)
  - Relationships among world objects (the edges of the graph).



### **Geospatial Knowledge Graphs**

- Geospatial entities are (abstractions of) real-world objects that have spatial and non-spatial characteristics.
- A knowledge graph will be called geospatial if it has at least one (but usually many) geospatial entity
- Knowledge about the spatial attributes of a feature can be:
  - Quantitative (distance between Athens and its airport)
    - Calculated using geometries
  - Qualitative (Athens is in the region of Attica)
    - Qualitative binary relations
## **Knowledge Graphs**

- DBpedia
- Wikidata
- GeoNames
- YAGO2
- YAGO2geo
- YAGO4
- WorldKG
- KnowWhereGraph

Encyclopedic (+ geospatial knowledge)

## **DBpedia**



- Open & Free KG (started in 2007!)
- Structured information from Wikipedia articles (infoboxes)
- Multiple languages (but different content)
- DBpedia (English): 1.6B RDF triples, 6.6M entities
- Automatically updated
- Geospatial Information:
  - 1.9 million coordinate pairs (centers of cities, towns, etc)
  - Thematic attributes (neighboring countries, cities of countries, etc)
  - Some cardinal directions (e.g., dbp:north)

S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. G. Ives. 2007. DBpedia: A nucleus for a web of open data. In The Semantic Web, 6th International Semantic Web Conference, 2nd Asian Semantic Web Conference, ISWC 2007 + ASWC 2007, Busan, Korea, 185 November 11-15, 2007, pp. 722–735.

## **DBpedia**



```
dbr:Lamia_(city) dbp:name "Lamia";
    rdf:type dbo:AdministrativeRegion ;
    geo:lat "38.900002"^^xsd:float ;
    geo:long "22.433332"^^xsd:float ;
    ...
    dbo:country dbr:Greece ;
    dbp:periph dbr:Central Greece (region) .
```

#### Wikidata



- Open & Free KG (started in 2012)
- Successor of Freebase
- >100M entities
- Crowdsourced (500 edits/min by community members)
- High quality structured data in real time
- Multilingual (same content)
- Geospatial Information:
  - 7M triples containing coordinate information
  - 20K geometries (polygons, multipolygons)
  - Topological information (e.g., neighboring countries, cities of countries)

### Wikidata



#### Geospatial Information:

- **Properties:** 
  - coordinate location (wd:P625)
  - geoshape (wd:P3896)
- Data types:
  - **GlobeCoordinate (**wd:Q29934236)
  - **GeoShape (**wd:Q42742911)

#### Wikidata



#### <Lamia\_Municipality> <instance\_of> <municipality\_of\_Greece>; <country> <Greece> ; <population> "75315" ; <headquarters\_location> geo:38.866389,22.367222 .

#### **GeoNames Gazetteer**



- A **freely** available geographical database.
- 7 M geographical names in various languages.
- 9 feature classes + 645 feature codes:
  - Administrative Boundary Features, Hydrographic Features, Area Features, Populated Place Features, Road / Railroad Features, Spot Features, Hypsographic Features, Vegetation Features, Undersea Features
- All lat/long coordinates are in WGS84.
- Users may manually edit, correct and add new names.
- Topological Information:
  - **Partonomic** relations (e.g., Berlin is located in Germany is located in Europe)
  - Neighboring countries for each location.

# The YAGO 2 Knowledge Graph

#### • YAGO:

- Wikipedia: Entities and their types
- WordNet Hierarchy
- Subject, Predicate, Object

#### • YAGO2:

- Spatial Knowledge
  - Geonames
- Temporal Knowledge
  - Wikipedia
- 447M facts, 9.8M entities
  - Location existence: 30% of entities
  - Time existence: 47% of entities
- SPOTL model:
  - Subject, Predicate, Object, Time and Location

191 Johannes Hoffart, Fabian M. Suchanek, Klaus Berberich, Gerhard Weikum, YAGO2: A spatially and temporally enhanced knowledge base from Wikipedia, Artificial Intelligence, Volume 194, 2013, p. 28-61.







## The YAGO 2 Knowledge Graph



Entities that have a permanent spatial extent on Earth.



- @base <http://yago-knowledge.org/resource/> .
  @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
- <Auckland> rdfs:label "Auckland"@eng .
  <Auckland> <isLocatedIn> <New\_Zealand> .
  <Auckland> <hasLatitude> "-36.840555555555556"^^<degrees>.
  <Auckland> <hasLongitude> "174.7399999999998"^^<degrees>.

### **YAGO2geo: Motivation & Goal**

#### • Motivation

- Not enough geospatial knowledge in current KGs
- Importance of geospatial data (e.g., GoogleMaps)

#### • Goal

- Extend YAGO2 with precise geospatial knowledge (polygons, lines)
- Combine multiple data sources
- Follow OGC standards

Nikolaos Karalis, Georgios Mandilaras, and Manolis Koubarakis. Extending the YAGO2 Knowledge Graph with Precise Geospatial 194 Knowledge, ISWC, Auckland, New Zealand, 26-30 October, 2019

#### **Data Sources**

- Official Administrative Data
  - Greek administrative data
    - Kallikratis: Greek Administrative Geography dataset
    - Kapodistrias (Source: geodata.gov.gr)
  - Ordnance Survey (England, Scotland, Wales)
  - Ordnance Survey Northern Ireland
  - Ordnance Survey Ireland
  - National Boundary Dataset: USGS Governmental Unit Boundaries dataset from the National Map represents major civil areas for the U.S

## Data Sources (cont'd)

- Unofficial Administrative Data
  - Global Administrative Areas (GADM)
    - Administrative areas of every country
    - Six administrative layers
    - Over 386,000 administrative areas
    - May 2018

#### Data Sources (cont'd)

- Crowdsourced Knowledge: OpenStreetMap (OSM)
  - Volunteer, crowdsourced project
  - Free map of the world
  - Multiple geographical features
    - Natural (e.g., lakes)
    - Waterways (e.g., streams)
    - Places (e.g., cities)
    - Land Use (e.g., forests)
  - Data provided by Geofabrik

## **Geospatial Knowledge in YAGO2geo KG**

|                                | DBPedia | Wikidata | YAGO2 | YAGO2geo                                               |
|--------------------------------|---------|----------|-------|--------------------------------------------------------|
| Coordinates                    | 1M      | 7.2M     | 12M   | 12M                                                    |
| Lines and<br>Polygons (Shapes) | _       | 23K      | _     | 3,8M Linestrings<br>703K Polygons and<br>Multipolygons |

#### • OGC geometries

```
<Oxfordshire> geo:hasGeometry y2geo:Geometry_OS_8328.
y2geo:Geometry_OS_8328 geo:asWKT "POLYGON((...))" .
<geoentity_Dimos_Athens_8133876> geo:hasGeometry y2geo:Geometry_gag_9186.
y2geo:Geometry gag 9186 geo:asWKT "MULTIPOLYGON(((...)))" .
```

#### • Topological relations, OGC vocabulary

• Precise geometries allow us to extract additional information

<Oxford> geo:sfWithin <Oxfordshire> .
<geoentity\_Dimos\_Athens\_8133876> geo:sfTouches <Kaisariani> .

### **YAGO2geo Ontology**

- Extend YAGO2 ontology in order to support new geospatial knowledge
- Example: Greek Administrative Geography ontology in YAGO2geo



### **Geospatial Knowledge in YAGO2geo**

- Question: Find the geometries of water bodies and forests that are within Saarland
- Answer:



### Temporal Knowledge in YAGO2geo KG

- Official temporal information for Greek administrative units
  - GAG dataset
  - Kapodistrias dataset





## **Temporal Knowledge in YAGO2geo KG**

<Magnesia\_Prefecture> <wasCreatedOnDate> "1899-##-##"^^xsd:date % existing fact

<Magnesia Prefecture> yago2geo:hasKapo OfficialCreationDate "1997-##-##"^^xsd:date.

<Magnesia\_Prefecture> yago2geo:hasKapo\_OfficialTerminationDate 2011-##-##"^^xsd:date.

### **Temporal Knowledge in YAGO2geo Ontology**

#### • Extend YAGO2 ontology in order to support new temporal knowledge



## Methodology

- Important: Avoid duplicate information
- Match entities of YAGO2 with entities of the data sources (owl:sameAs)
- Matching Phase
  - Label Similarity Filter
    - Jaro-Winkler (>0.82 threshold)
    - Exploits multilingual labels
  - Geometry Distance Filter (over the label-based matched entities)
    - Disambiguation Step (many geographic entities that share the same name)
    - Euclidean distance in the WGS:84 coordinate system
- Manual evaluation of a subset of the total matches
- References: YAGO2, LinkedGeoData

## Methodology

- The matching phase is applied on **manually created** pairs of classes
  - Municipalities of GAG and *third-order\_administrative\_division* of YAGO2
  - Level-1 of GADM and *first-order\_administrative\_division* of YAGO2
  - Forests of OSM and *forests* of YAGO2
  - 0 ...
- Matched entities of YAGO2: Extended with new information
- Unmatched entities data sources
  - Administrative data sources: New entities in YAGO2geo
  - $\circ$  OpenStreetMap: Noisy data  $\rightarrow$  not included in YAGO2geo

#### **Results, Greece**

| GAG                              | YAGO2                           | # Matches | Precision |  |
|----------------------------------|---------------------------------|-----------|-----------|--|
| decentralized<br>administrations | administrative_division         | 6/7       | 1.000     |  |
| regions                          | first-order                     | 11/13     | 1.000     |  |
| regional units                   | administrative_division         | 21/74     | 1.000     |  |
| municipality                     | third-order                     | 324/325   | 1.000     |  |
| municipal unit and community     | populated_place and<br>locality | 530/1037  | 0.907     |  |

• The second administrative level of YAGO2 contains former Greek administrative units

#### YAGO2geo OSM Updater

• YAGO2geo is automatically updated by OSM information.

#### YAGO4

- Latest version of YAGO
- Created from three sources:
  - Leaf nodes of the taxonomy and entities: Wikidata (with Wikipedia page titles)
  - Inner nodes of the taxonomy and properties: **schema.org** and **bioschemas.org**
- 10K classes
- SHACL & OWL constraints: consistent KG
- Geospatial information:
  - Schema defines GeoCoordinates or a GeoShape type (not integrated to YAGO4)

@base <http://yago-knowledge.org/resource/> .
@prefix schema: <http://schema.org/> .
<Athens> schema:geo geo:37.97944444444745,23.716111111113 .

### YAGO4, Geospatial Extension

- Follows the methodology of YAGO2geo
  - GAG dataset
- Detailed geometries
  - Polygons
  - Multi-polygons

#### • Example:

@base <http://yago-knowledge.org/resource/> .
@prefix schema: <http://schema.org/> .
@prefix ext: <http://ai.di.uoa.gr/> .
<Athens> schema:geo ext:Geometry\_Q1524 .
ext:Geometry\_Q1524 schema:polygon "..." .
ext:Geometry\_Q1524 schema:polygon "..." .

ext:Geometry\_Q1524 schema:polygon "..." .

### YAGO4, Taxonomy Extension



210



- schema.org does not support:
  - Well-known spatial literal formats (e.g., WKT)
  - Complex geometries (e.g., multi-polygons, multiple coordinate reference systems)

### WorldKG

- Geographic KG from OpenStreetMap (OSM) dataset
- OSM: rich, open, crowdsourced geographic dataset
  - >6.8B geographic entities in 188 countries
  - User-defined key-value pairs
- WorldKG:
  - Conversion of OSM schema to ontology
  - >100M geographic entities from 188 countries, >800M triples
  - Aligned with Wikidata & DBpedia
- WorldKG population:
  - Entities: OSM nodes with tags from most recent OSM dumps
  - Geographic objects represented as sf:Point objects
  - **Property:** geo:asWKT
  - Geographic coordinates: from OSM keys (lat, long) as geo: WKTLiteral literal %12

#### WorldKG



## WorldKG Ontology



## **KnowWhereGraph**

- For the integration of geospatial data silos to offer information for environmental intelligence:
  - Disaster relief
  - Food-related supply chains
  - Land valuation
- Information about:
  - Extreme events
  - Administrative boundaries
  - Soils
  - Crops
  - Climate
  - Transportation

#### >12B triples

Janowicz, K. et al. 2022. "Know, Know Where, KnowWhereGraph: A densely connected, cross-domain knowledge graph and geo-enrichment service stack for applications in 215 environmental intelligence." Al Magazine 43: 30– 39.

#### **KnowWhereGraph**

- Geospatial Knowledge: S2 Grid System
  - Hierarchical grid over Earth's surface
  - Each grid cell in a level: 4 subcells of increasing spatial resolution
  - US: at least 20km<sup>2</sup>/cell
- Ontologies:
  - GeoSPARQL
  - SOSA/SSN
  - QUDT
  - 0 ...
- Datasets:
  - 17 thematic raw datasets (e.g., Soil Properties dataset, Wildfire dataset, Climate Hazards dataset)
  - 11 place-centric raw datasets (e.g., S2 Cells dataset, ZIP dataset, GADM)

#### Datasets in KnowWhereGraph

| Thematic Datasets                   |                                               |                                                                                                                      |                           | Place-Centric Datasets      |                                             |                                                                                                                         |                              |
|-------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------------------|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------|
| Dataset Name/<br>Theme              | Source<br>Agency                              | Key Attributes                                                                                                       | Spatial<br>Coverage       | Temporal<br>Coverage        | Place-Centric<br>Dataset                    | Defining<br>Authority                                                                                                   | Spatial<br>Coverage          |
| Soil Properties                     | USDA                                          | soil type, farmland class                                                                                            | Targeted<br>regions in US | Current                     | S2 Cells                                    | Google                                                                                                                  | Lvl 9 (Global<br>Lvl 13 (US) |
| Widfres                             | USGS, USDA,<br>USFS, NIFC                     | wildfire type, burn severity,<br>num, acres burned,<br>contained date                                                | US                        | 1984-current                | Global<br>Administrative<br>Regions         | University of<br>Berkeley,<br>Museum of<br>Vortebrate<br>Zoology and the<br>International<br>Rice Research<br>Institute | Global                       |
| Earthquakes                         | USGS                                          | magnitude, length, width, geometry                                                                                   | Global (mag.<br>over 4.5) | 2011-01-01 to<br>2022-01-18 |                                             |                                                                                                                         |                              |
| Climate Hazards                     | NOAA                                          | injuries, deaths, property<br>damages                                                                                | ŲS                        | 1950-2022                   |                                             |                                                                                                                         |                              |
| Expert - Covid-19<br>Mobility       | Direct Relief<br>(DR)                         | name, affiliation, expertise                                                                                         | Global                    | 2021                        | US Federal<br>Judicial District             | DoJ, ESRI                                                                                                               | US                           |
| Expert - General                    | KWG, UC<br>System, DR,<br>Semantic<br>Scholar | name, affiliation, expertise with spatiotemporal scopes                                                              | Global                    | unlimited                   | National Weather<br>Zones                   | NOAA                                                                                                                    | US                           |
| Cropland Types                      | USDA                                          | crop types (raster data)                                                                                             | US                        | 2008-2021                   | FIPS Codes                                  | NRCS                                                                                                                    | US                           |
| Air Qual. Obs.                      | U.S. EPA                                      | AQI value, CO concentration                                                                                          | US                        | 1980-2022                   | Designated<br>Market Area                   | Nielen                                                                                                                  | US                           |
| Smoke Plumes                        | NOAA                                          | daily smoke plumes extent                                                                                            | US                        | 2010-2022                   | ZIP                                         | ZCTA                                                                                                                    | US                           |
| Climate<br>Observations             | NOAA                                          | temperature, precipitation,<br>PDSI, PHSI                                                                            | US                        | 1950 - 2022                 | Climate Division                            | NOAA                                                                                                                    | US                           |
| Disaster<br>Declaration             | FEMA                                          | designated area, program,<br>amount approved, program<br>designated date                                             | US                        | 1953 - 2022                 | Census<br>Metropolitan Area                 | US Census                                                                                                               | US                           |
| Smoke Plume<br>Extents              | NOAA                                          | Smoke extent                                                                                                         | US                        | 2017 - 2022                 | Drought Zone                                | NDMC,<br>USDA,NOAA                                                                                                      | US                           |
| BlueSky<br>Forecasts                | Bluesky                                       | PM10, PM5                                                                                                            | US                        | 2022-03-07                  | Geographic<br>Name<br>Information<br>System | USGS                                                                                                                    | US                           |
| Transportation<br>(highway network) | DOT                                           | road type, road length, road sign                                                                                    | US                        | 2014                        |                                             |                                                                                                                         |                              |
| Public Health                       | CDC, US<br>Census                             | below poverty level percent,<br>diabetes age adjusted 20<br>plus percent,<br>obesity age adjusted 20 plus<br>percent | US                        | 2017                        |                                             |                                                                                                                         |                              |
| Social<br>Vulnerability             | CDC/ATSDR                                     | social vulnerability index                                                                                           | US                        | 2018                        | 1                                           |                                                                                                                         |                              |
| Hurricane Tracks                    | NOAA                                          | max wind speed, min<br>pressure                                                                                      | US                        | 1851-2020                   | 1                                           |                                                                                                                         |                              |

#### **KnowWhereGraph**



## **KnowWhereGraph - Interlinking**

- The regions, such as climate divisions or counties, are linked to entities from Wikidata or the Geographic Names Information System
  - hence, access to population density, previous events, soil health, etc
- Topological relations among regions (e.g., RCC8)
- Interlinked places with events with causal relationships and provenance

E.g., Where a fire took place, which events it triggered, and which regions have been affected, for example, by heavy smoke
# **KnowWhereGraph**





Questions?

# Question answering over geospatial knowledge graphs



#### **Motivation**

- Geospatial or geographic knowledge
  - important in many applications (travel, tourism, education etc.)
- Increasing use of geospatial terms in search engine queries. Examples:
  - Which countries border Greece?
  - Is there a Timberland store in Athens?
- Can geospatial questions be answered by today's search engine ?

#### Which countries border Greece?



#### Which countries border Greece?

C, All Collectory Of Mages ME News Coll Volteon 1 Mores

l O Q

#### About \$3,300,000 results (0.81 seconds)

Greece is a country in south eastern Europe on the southern part of the Balkan Peninsula, bordering the Mediterranean Sea in south and the Ionian Sea in west. Greece is bordered by Albania, Bulgaria, Turkey, Republic of Macedonia, and it shares maritime borders with Cyprus, Egypt, Italy, and Libya.

Political Map of Greece - Nations Online Project



#### People also ask 1

| How many countries border with Greece?           | ~          |
|--------------------------------------------------|------------|
| Which country has borders with Greece?           |            |
| How many islands border Greece?                  | Ý          |
| What three countries border Greece to the north? | ~          |
|                                                  | Familiants |

#### Is there a Timberland store in Athens?



https://www.timberlandshop.gr : site to - Translate this page - 1

#### Βρείτε Κατάστημα

Tenderland Xohlovõps, Xohlovõps, Androvory Xalunovit 20. Tepengi; Xohlovõps, Tepengi; Arner), T.K. 15234. dephiljer 2198880114 - Tenderland l'Augóős: Thopôfs: disolikovite ...

# Which countries border Greece and have population more than 5 million?

| Google | Which countries border Greece and have population more than 5 mill 🗙 🌷 💿 🔍                                                                                                                            |                                          |  |  |  |  |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--|--|--|--|
|        | Q All 🗐 News 🗐 Images 🖺 Books 🖉 Shopping 🗄 More                                                                                                                                                       | Tools                                    |  |  |  |  |
|        | About 10.800,000 results (0.77 seconds)                                                                                                                                                               |                                          |  |  |  |  |
|        | https://en.wikipedia.org > wiki > Greece                                                                                                                                                              | https://en.wikipedia.org > wiki > Greece |  |  |  |  |
|        | Greece - Wikipedia                                                                                                                                                                                    |                                          |  |  |  |  |
|        | Greece shares land borders with Albania to the northwest, North Macedonia and Bulgaria to<br>north, and Turkey to the northeast.                                                                      | the                                      |  |  |  |  |
|        | https://en.wikipedia.org > wiki > Demographics_of_Gre                                                                                                                                                 |                                          |  |  |  |  |
|        | Demographics of Greece - Wikipedia<br>The population of Greece was estimated by the United Nations to be 10,445,365 in 2021<br>(including displaced refugees). Demographics of the Hellenic Republic. | ų.                                       |  |  |  |  |
|        | People also ask                                                                                                                                                                                       |                                          |  |  |  |  |
|        | What are the border countries of Greece?                                                                                                                                                              | ~                                        |  |  |  |  |
|        | Where is the largest Greek population outside of Greece? $\checkmark$                                                                                                                                 |                                          |  |  |  |  |
|        | What borders does Greece share?                                                                                                                                                                       | ~                                        |  |  |  |  |
|        | Where is the largest Greek population?                                                                                                                                                                | ~                                        |  |  |  |  |
|        |                                                                                                                                                                                                       | Feedback                                 |  |  |  |  |

#### Question

- How can we go beyond what current search engines offer for geospatial questions?
- Answer: Develop **geospatial question answering systems!**

# **Existing Geospatial Question Answering Systems**

- GeoQA (2018) [1]
  - DBpedia + OpenStreetMap + GADM
- Revised version of GeoQA (2020) [2]
  - Same KGs
- Neural factoid geospatial question answering [3]
  - Does not generate executable queries over any KGs.
- Question Answering System by Hamzei et al. [4]
  - YAGO2geo (with more data added from OpenStreetMap)
- **GeoQA2** [5]
  - YAGO2geo

[1] Punjani, D., et al. "Template-based question answering over linked geospatial data." Proceedings of the 12th Workshop on Geographic Information Retrieval. 2018.

[2] Punjani, D., et al., 2020. Template-based question answering over linked geospatial data. CoRR, abs/2007.07060. Available from: <a href="https://arxiv.org/abs/2007.07060">https://arxiv.org/abs/2007.07060</a>.

[3] Li, H., et al. "Neural factoid geospatial question answering." Journal of Spatial Information Science 23 (2021): 65-90.

[4] Hamzei, E., et al. 2022. Translating place-related questions to GeoSPARQL queries. In: Proceedings of the Web Conference (WWW).

[5] Punjani, D., et al. (2023) The Question Answering System GeoQA2 for the Geospatial Knowledge Graph YAGO2geo and a New Benchmark For its 228 Evaluation. Forthcoming.

# **The Question Answering Engine GeoQA2**

- GeoQA2 is developed using Qanary and Frankenstein.
  - Qanary
    - lightweight component-based QA methodology
  - Frankenstein
    - most recent implementation of the ideas of Qanary.
- In our work, we leverage the power of the Qanary framework to create six QA components which collectively implement the geospatial QA pipeline of GeoQA2.



#### The Conceptual Architecture Of The GeoQA2 System



#### **Dependency Parse Tree Generator**

- Part-of-speech (POS) tagging
- Dependency parse tree
- Stanford CoreNLP API.
- Example question: "Which county councils are in Ireland?"



#### **Instance Identifier**

- Identifies the **features**.
  - Example: Country Ireland, city Dublin, river Shannon etc.
- Mapped to YAGO2geo resource.
- TagMeDisambiguate.
  - It maps instances to Wikipedia (hence to YAGO2 as well)
- We also search for resources in the YAGO2geo(added instances) dataset but not in YAGO2, and add them to the list of identified instances.
- Example question: "Which forests are contained in the Norfolk?"
   yago2:Norfolk
- The appropriate node of dependency parse tree is annotated with the results.

# **Concept Identifier**

#### • Identifies the class of features

- Maps them to the corresponding **classes** in the **YAGO2geo ontology**.
- Following process is followed in concept identifier:
  - Iterate through classes of ontology
  - generate **n-grams** from question based on number of words in class labels
  - n-grams with string similarity more than 99% are mapped to the respective class
- E.g., "Which county councils are in Ireland?"
  - yago2geoo:OSI\_County\_Council
- The appropriate node of dependency parse tree is annotated with the identified concepts.

### **Geospatial Relation Identifier**

- This module first identifies **geospatial relations** in the input question, and then maps them to a **spatial function** of the **GeoSPARQL** or **stSPARQL vocabulary**, or a data property with a spatial semantics in the YAGO2geo ontology.
- The appropriate node of dependency parse tree is annotated with the results of this module.

### **Supported Geospatial Relations**

| Category                    | Geospatial Relation                                                                                                              |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Topological relations       | "within","crosses","bor<br>ders"                                                                                                 |
| Distance relations          | "near","at most x<br>units", "at least x<br>units"                                                                               |
| Cardinal Direction relation | "north of", " south of",<br>"east of", "west of",<br>"northwest of",<br>"northeast of",<br>"southwest of", and<br>"southeast of" |

| Geospatial relation | Synonyms in dictionary                                                  |
|---------------------|-------------------------------------------------------------------------|
| within              | In, inside, is located in, is included in                               |
| crosses             | Cross, intersect                                                        |
| near                | Nearby, close to, around                                                |
| borders             | is/are at the border of, is/are at the outskirts of, at the boundary of |
| North of            | Above of                                                                |
| South of            | below                                                                   |
| East of             | To the right                                                            |
| West of             | To the left                                                             |

### **Property Identifier**

- The property identifier module
  - Identifies attributes of types of features and attributes of features
  - Maps them to the corresponding **properties** in **YAGO2geo**
- Consider question "What is the population of villages in Rhodes ?"
  - yago2geoo:hasGAG\_Population

| YAGO2geo Class            | YAGO2geo Property                | Property Label      |  |
|---------------------------|----------------------------------|---------------------|--|
| yago2geoo:OSM_village     | yago2geoo:hasGAG_Population      | GAG Population      |  |
|                           | yago2geoo:hasOSM_Area            | OSM Area            |  |
|                           | yago2geoo:hasGADM_UpperLevelUnit | GADM UpperLevelUnit |  |
| yago2:wordnet_river_10941 | yago2infobox:length              | length              |  |
| 1430                      | yago2infobox:source              | source              |  |
|                           | yago2infobox:discharge           | discharge           |  |

#### **Property Identifier**

#### • "Which is the largest lake in Greece?"

#### • yagoinfobox:area

| YAGO2geo Class                                                                                                                                                          | Keyword                    | Property               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------|
| yago2:wordnet_lake_109328904                                                                                                                                            | Largest, Smallest          | yagoinfobox:area       |
| yago2:wordnet_river_109411430<br>yago2:wordnet_bridge_102898711                                                                                                         | Smallest, Largest, Biggest | yagoinfobox:length     |
| yago2:wordnet_mountain_19359803                                                                                                                                         | Highest, Tallest, Smallest | yagoinfobox:elevationm |
| yago2:wordnet_hospital_1025405959                                                                                                                                       | Biggest                    | yagoinfobox:capacity   |
| yago2:wordnet_hotel_103542333                                                                                                                                           | Largest, Smallest          | yagoinfobox:area       |
| vogo2;;;vordpot_dom_102160200                                                                                                                                           | Tallest                    | yagoinfobox:damnheight |
| yagoz.worunet_dam_105100509                                                                                                                                             | Largest, Smallest          | yagoinfobox:area       |
| yago2:wordnet_building_102913152                                                                                                                                        | Highest, Tallest, Smallest | yagoinfobox:height     |
| yago2:wordnet_county_108546183<br>yago2:wordnet_city_108524735<br>yago2:wordnet_town_108524735<br>yago2:wordnet_village_108672738<br>yago2:wordnet_settlement_108672562 | Smallest, Biggest, Largest | yagoinfobox:area       |

237

# **Property Identifier**

- Supposingly YAGO2geo does not contain "area" property for the mentioned class
  - $\circ$   $\,$  It will be calculated using spatial function  $\,$ 
    - strdf:area()

#### **Query Generator**

- This module generates **GeoSPARQL/SPARQL** queries using handcrafted query templates.
- We have identified question patterns and mapped them to GeoSPARQL/SPARQL queries

| Question Pattern | Example                                                                       | Where                                                            |
|------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------|
| CRI              | Which rivers cross Limerick?                                                  | <ul> <li>C → Concept</li> <li>R → Geospatial relation</li> </ul> |
| CRIRI            | Which churches are close to the Shannon in Limerick?                          | I → Instance                                                     |
| CRC              | Which restaurants are near hotels?                                            | • $P \rightarrow Property$<br>• $N \rightarrow Count$            |
| CRCRI            | Which restaurants are near hotels in Limerick?                                |                                                                  |
| IRI              | Is Hampshire north of Berkshire?                                              |                                                                  |
| IP               | What is total area of county Cheshire?                                        |                                                                  |
| PCRI             | What is the length of river that crosses London?                              |                                                                  |
| PCRIRI           | Which Greek restaurant are near Wembley Stadium in London?                    |                                                                  |
| PCRCRI           | Find the area of the parks that belong to counties north of Budgebury Forest. |                                                                  |
| NCRI             | How many hospitals are there on Oxford?                                       | 239                                                              |

#### **Question Patterns : PCRI (Query Generator)**

| Pattern | Example natural language question                       | nple natural Templates Query Generated                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                   |  |
|---------|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| PCRI    | What is the population<br>of the villages in<br>Rhodes? | GeoSPARQL:<br>select ?property where {<br>?x rdf:type _Concept;<br>geo:hasGeometry ?xGeom;<br>Property ?property.<br>?xGeom geo:asWKT ?xWKT.<br>Instance geo:hasGeometry ?iGeom.<br>?iGeom geo:asWKT ?iWKT.<br>FILTER(_Relation(?xWKT, ?iWKT))<br>} | <pre>select ?property where {     ?x rdf:type yago2geoo:OSM_village;     geo:hasGeometry ?xGeom;     yago2geoo:hasGAG_Population ?property.     ?xGeom geo:asWKT ?xWKT.     yago2:Rhodes geo:hasGeometry ?iGeom.     ?iGeom geo:asWKT ?iWKT.     FILTER(geof:sfWithin(?xWKT, ?iWKT))     } </pre> |  |
|         |                                                         | SPARQL:<br>Select ?property where {<br>?x rdf:type _Concept.<br>?x _Relation _Instance.<br>?x _Property ?property.<br>}                                                                                                                             | <pre>select ?property where {   ?x rdf:type yago2:wordnet_village_108672738.   ?x yago2:isLocatedIn yago2:Rhodes.   ?x yagoinfobox:population ?property.   }   240</pre>                                                                                                                          |  |

# **Queries With Aggregates and Superlatives**

- "Which Civil Parishes in Ireland have more than 10 townlands?"
  - Pattern present in the question is **CRIRI**
  - Group By and Count
- Use of Constituents and Dependencies from parse trees
  - **Quantifier phrase** (QP) from Constituency parse tree
  - Add Count(distinct ?y) as ?total and Group By(?x ) Having (?total > 10)
- Generated Query :

```
select distinct ?x (count(distinct ?y) as ?total) where {
    ?x rdf:type yago2geoo:OSI_Civil_Parish;
        geo:hasGeometry ?cGeom1.
    ?cGeom1 geo:asWKT ?cWKT1.
    ?y rdf:type yago2geoo:OSI_Townland;
        geo:hasGeometry ?cGeom2. ?cGeom2 geo:asWKT ?cWKT2.
    yago2:Republic_of_Ireland geo:hasGeometry ?iGeom.
    ?iGeom geo:asWKT ?iWKT.
    FILTER(geof:sfWithin(?cWKT1,?iWKT) && geof:sfContains(?cWKT1,?cWKT2))
} GROUP BY(?x) HAVING(?total > 10 )
```

#### **Query Ranking**

- We use a very simple heuristic for the ranking of generated queries based on the estimated selectivity of the generated queries.
- We compute the selectivity of a SPARQL or GeoSPARQL query taking into account only the triple patterns present in the query and using the formulas of Stocker et al., 2008.
- The generated query with the lowest selectivity is selected to be executed.

Stocker, M., et al., 2008. SPARQL basic graph pattern optimization using selectivity estimation. In: J. Huai, R. Chen, H. Hon, Y. Liu, W. Ma, A. Tomkins and X. Zhang, eds. Proceedings of the 17th International Conference on World Wide Web, WWW 2008, Beijing, China, April 21-25, 2008. ACM, 595–604.

#### **Query Executor**

• The last module executes the top-ranked GeoSPARQL/SPARQL query against a YAGO2geo Strabon endpoint at <u>http://pyravlos2.di.uoa.gr:8080/yago2geo/</u>.

select ?property where {
?x rdf:type yago2geoo:OSM\_village;
geo:hasGeometry ?xGeom;
yago2geoo:hasGAG\_Population ?property.
?xGeom geo:asWKT ?xWKT.
yago2:Rhodes geo:hasGeometry ?iGeom.
?iGeom geo:asWKT ?iWKT.
FILTER(geof:sfWithin(?xWKT, ?iWKT))
}
Answer :
"2714"^^<http://www.w3.org/2001/XMLSchema#integer>
"1027"^^<http://www.w3.org/2001/XMLSchema#integer>
"1027"^^<http://www.w3.org/2001/XMLSchema#integer>

#### Which counties are north of Berkshire ?



244

# QA Engine by Hamzei et al. (2022)

- Encoding Extraction
- Grammatical parsing
  - Identify relations among encodings
- First-Order Logic Statements
- GeoSPARQL query generation
  - Concept identification and ontology mapping
  - Query generation



Method workflow to translate place-related question to GeoSPARQL queries

#### **Example Question**

# • How many pharmacies are in 200 meter radius of High Street in Oxford?

#### **Encoding Extraction**

- Pre-trained models for fine-grained
  - named entity recognition (NER) [1]
  - part-of-speech tagging [2]

| Encoding class | Code    | Encoding class            | Code |
|----------------|---------|---------------------------|------|
| where          | 1       | place name                | Р    |
| what           | 2       | place type                | р    |
| which          | 3       | event                     | Е    |
| when           | 4       | event type                | е    |
| how            | 5       | properties                | 0    |
| how+adj        | 6       | activity                  | а    |
| why            | 7       | situation                 | S    |
| is/are         | 8       | spatial relation          | R    |
| date           | d       | temporal relation         | r    |
| place quality  | Q       | properties/events quality | q    |
| comparison     | <, >, = | and                       | &    |
| or             | 1       | negation                  | !    |

[1] Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, K. Kawakami, and Chris Dyer. 2016. Neural Architectures for Named Entity Recognition. ArXiv abs/1603.01360 (2016)

[2] V. Joshi, Matthew E. Peters, and Mark Hopkins. 2018. Extending a Parser to Distant Domains Using a Few Dozen Partially Annotated Examples. In ACL.

# Encoding

| name                   | part-of-speech | role |
|------------------------|----------------|------|
| How many               | ADV            | 6    |
| High Street            | NOUN           | Р    |
| Oxford                 | NOUN           | Ρ    |
| pharmacies             | NOUN           | р    |
| in 200 meter radius of | ADP            | R    |
| in                     | ADP            | R    |

# **Grammatical Parsing**

• Extract relationships between encodings

- Constituency Parsing
  - Phrase-level information
    - Conjunctions phrases
    - Quality phrases
    - Location phrases
- Intent Detection
  - Heuristic method derived from constituency parsing results
- Dependency Parsing
  - Places/events with location phrases
  - Situation/activities with properties
  - Places with situations/activities
  - Comparison phrases and their source

#### **Constituency Parsing**

How many pharmacies are in 200 meter radius of High Street in Oxford ? (SBARQ) {}

```
— How many pharmacies (WHNP) {}
                                                                                    How many pharmacies (WHNP) {}
    - How many (WHADJP) {}
                                                                                      How many (WH) {6}
       - How (WRB) {}
       └─ many (JJ) {}
                                                                                      └─ pharmacies (NNS) {p}
   L pharmacies (NNS) {}
                                                                                    - are in 200 meter radius of High Street in Oxford (VP) {}
 - are in 200 meter radius of High Street in Oxford (VP) {}
                                                                                      - are (VBP) {}
    - are (VBP) {}
   └─ in 200 meter radius of High Street in Oxford (PP) {}
                                                                                      in 200 meter radius of High Street in Oxford (PP) {LOCATION}
       - in (IN) {}
                                                                                           - in 200 meter radius of (IN) {R}
       └── 200 meter radius of High Street in Oxford (NP) {}
                                                                                              - in (IN) {}
           - 200 meter radius of High Street (NP) {}
               — 200 meter radius (NP) {}
                                                                                               — 200 meter radius (NP) {}
                    — 200 meter (ADJP) {}

    — 200 meter (ADJP) {MEASURE}

                      - 200 (CD) {}
                                                                                                       - 200 (CD) {n}
                      └─ meter (NN) {}
                   - radius (NN) {}
                                                                                                      - meter (NN) {o}
               └─ of High Street (PP) {}
                                                                                                  - radius (NN) {o}
                   - of (IN) {}
                                                                                                - of (IN) {R}
                  └── High Street (NP) {}
                      High (NNP) {}
                                                                                            - High Street (NP) {P}
                      └── Street (NNP) {}
                                                                                            - in Oxford (PP) {LOCATION}
           in Oxford (PP) {}
                                                                                              - in (IN) {R}
               - in (IN) {}
               └── Oxford (NP) {}
                                                                                              - Oxford (NP) {P}
                  └── Oxford (NNP) {}
                                                                                  └─ ? (.) {}
└─ ? (.) {}
```

**Constituency Parse Tree (before labelling)** 

Constituency Parse Tree (after labelling)

How many pharmacies are in 200 meter radius of High Street in Oxford ? (SBARQ) {}

# **Intent Identification**

- Word Phrase Rule
  - How+adjective
  - Intent could be **Count** or distance
- Specificity rule
  - More Specific Concepts
    - "How many pharmacies are in 200 meter radius of High Street in Oxford?"
- Identified Intent
  - How many pharmacies

### **Dependency Parsing**

```
are (root) {['AUX']} []
   How (advmod) {['ADV']} []
    pharmacies (nsubj) {['NOUN']} []
    ____ many (dep) {['ADJ']} []
   in (prep) {['ADP']} []
    -- radius (dep) {['NOUN']} []
          - meter (nn) {['NOUN']} []
            └── 200 (dep) {['NUM']} []
           of (prep) {['ADP']} []
            L— Street (pobj) {['PROPN']} []
                L— High (amod) {['PROPN']} []
    in (prep) {['ADP']} []
    L Oxford (pobj) {['PROPN']} []
    ? (dep) {['PUNCT']} []
```

are (root) {['AUX']} [] How many (advmod) {['ADV']} [6] pharmacies (nsubj) {['NOUN']} [p] in 200 meter radius of (prep) {['ADP']} [R] High Street (pobj) {['NOUN']} [P] in (prep) {['ADP']} [R] Uxford (pobj) {['NOUN']} [P] (dep) {['PUNCT']} []

Dependency Parse Tree (after labelling)

## **Generating First-Order Logic Statements**

#### • Terms

- Either a **constant** or a **variable**
- e.g., High Street or x

#### • Predicates

- Symbols that either **declare terms** or **describe their relationships**
- Every generic declaration is either a place or an event
  - e.g.,  $\forall x \text{ PHARMACY}(x) \rightarrow \text{PLACE}(x)$
- Binary or ternary predicates: spatiotemporal, situation/activity relationships, comparisons and qualities
  - e.g., declaration: PLACE(High Street) and relations: IN(High Street, Oxford) and IN\_RADIUS\_OF(x0, High Street, 200 meter)
- Generated Statement
  - COUNT(x0) : PLACE(High Street) ∧ PLACE(Oxford) ∧ PHARMACY(x0) ∧ IN\_RADIUS\_OF(x0, High Street, 200 meter) ∧ IN(High Street, Oxford)

#### **GeoSPARQL Query Generation - Step 1**

- **Concept identification and ontology mapping** over YAGO2geo (with more OSM data)
- Apache Solr to index the names and identifiers of places and events
  - String matching using Solr search
- One-to-many mapping to match extracted place/event types and properties to the knowledge base ontology
  - Exact matching
    - Knowledge graph ontology
  - Label matching using cosine similarity
    - The contextual BERT representations (Devlin et al., 2019)
    - Labels in the ontology
  - Glossary matching using cosine similarity
    - BERT representations of the definitions
      - WordNet and Wikipedia snippet search
    - Glossary in the ontology

#### Example

#### • Names and identifiers of places and events

- PLACE(High Street) : yago2:High\_Street\_Lincoln yago2geor:OSM\_HighStreet561 yago2geor:OSM\_HIGHSTREET678 yago2geor:OSM\_HighStreet541 yago2geor:OSM\_HighStreet789 yago2geor:OSM\_HighStreet302 yago2geor:OSM\_HighStreet414 yago2geor:OSM\_HighStreet985 yago2geor:OSM\_HighStreet936 yago2geor:OSM\_HIGHSTREET381...
- PLACE(Oxford) : yago2:Oxford yago2geor:OSM\_oxfordvapours470 yago2geor:osientity\_2AE19629B1DE13A3E05500000000001 yago2geor:OSM\_Oxford440 yago2geor:OSM\_Oxford180 yago2geor:OSM\_Oxford159 yago2geor:OSM\_Oxford996 .....
- Extracted place/event types
  - PHARMACY(x0): yago2geoo:OSM\_amenity\_veterinary yago2:wordnet\_drugstore\_103249342 yago2geoo:OSM\_office\_logistics yago2geoo:OSM\_amenity\_pharmacy yago2geoo:OSM\_amenity\_dentist
### **GeoSPARQL Query Generation - Step 2**

### • Generation of an intermediate non-executable query

- Predefined templates
- Determine structure of a query (i.e., ASK vs. SELECT query)
  - extracted intent
- WHERE-clause is generated
  - concatenate individual concept and relation definition statements
- Sorting and aggregation (ORDER-BY and GROUP-BY clauses) If needed.
- Identified concept and their mappings to the ontology are replaced in query to generate final executable query.

### **Example ( Non-executable Query)**

SELECT DISTINCT (COUNT(distinct ?x0) as ?countx0)
WHERE {

```
VALUES ?c0 \{ < URIS > \}.
?c0 geosparql:hasGeometry ?c0G .
?c0G geosparql:asWKT ?c0GEOM .
VALUES ?c1 \{\langle URIS \rangle \}.
?cl geosparql:hasGeometry ?clG .
?clG geosparql:asWKT ?clGEOM .
?x0 rdf:type ?x0TYPE;
   geosparql:hasGeometry ?x0G .
?x0G geosparql:asWKT ?x0GEOM .
VALUES ? \times 0 \text{TYPE} \{ < \text{URIS} > \}.
FILTER(geof:distance(?x0GEOM, ?c0GEOM, units:meter) < 200).</pre>
FILTER (geof:sfContains(?c1GEOM, ?x0GEOM)).
```

# **Example (Final Generated Query)**

SELECT DISTINCT (COUNT(distinct ?x0) as ?countx0) WHERE { VALUES ?c0 {yago2:High\_Street\_Lincoln yago2geor:OSM\_HighStreet561 yago2geor:OSM\_HIGHSTREET678 yago2geor:OSM\_HighStreet541 yago2geor:OSM\_HighStreet789 yago2geor:OSM\_HighStreet302 yago2geor:OSM\_HighStreet414 yago2geor:OSM\_HighStreet985 yago2geor:OSM\_HighStreet936 yago2geor:OSM\_HIGHSTREET381 .....}. ?c0 geosparql:hasGeometry ?c0G . ?c0G geosparql:asWKT ?c0GEOM . VALUES ?c1 {vago2:Oxford vago2geor:OSM\_oxfordvapours470 vago2geor:osientity\_2AE19629B1DE13A3E05500000000001\_yago2geor:OSM\_Oxford440 go2geor:OSM\_Oxford180 yago2geor:OSM\_Oxford159 yago2geor:OSM\_Oxford996 ..... ?c1 geosparql:hasGeometry ?c1G .
?c1G geosparql:asWKT ?c1GEOM . ?x0 rdf:type ?x0TYPE; geosparql:hasGeometry ?x0G . ?x0G geosparql:asWKT ?x0GEOM . VALUES ?x0TYPE {yago2geoo:OSM\_amenity\_veterinary yago2:wordnet\_drugstore\_103249342 yago2geoo:OSM\_office\_logistics yago2geoo:OSM\_amenity\_pharmacy yago2geoo:OSM\_amenity\_dentist} . FILTER(geof:distance(?x0GEOM, ?c0GEOM, units:meter) < 200). FILTER (geof:sfContains(?c1GEOM, ?x0GEOM)).

### What rivers flow through Liverpool?

| Choose an exampl                                                                                                                 | • . • What rivers flows through Liverpool?                                                                                                                                                                                                          | ٩ |
|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|                                                                                                                                  | Query Executed                                                                                                                                                                                                                                      |   |
| Information extraction                                                                                                           | on :                                                                                                                                                                                                                                                | - |
| Logical representati                                                                                                             | on                                                                                                                                                                                                                                                  |   |
| Human-readable qu                                                                                                                | ery                                                                                                                                                                                                                                                 |   |
| Exectuable query                                                                                                                 |                                                                                                                                                                                                                                                     |   |
| Results                                                                                                                          |                                                                                                                                                                                                                                                     |   |
| Results:                                                                                                                         |                                                                                                                                                                                                                                                     |   |
|                                                                                                                                  |                                                                                                                                                                                                                                                     |   |
|                                                                                                                                  | x0                                                                                                                                                                                                                                                  |   |
| http://kr.di.uoa.g                                                                                                               | x0<br>pr/yago2geo/resource/OSM_Mersey137                                                                                                                                                                                                            |   |
| http://kr.di.uoa.g                                                                                                               | x0<br>gr/yago2geo/resource/OSM_Mersey137<br>gr/yago2geo/resource/OSM_RiverMersey664                                                                                                                                                                 |   |
| http://kr.di.uoa.g<br>http://kr.di.uoa.g<br>http://kr.di.uoa.g                                                                   | x0<br>gr/yago2geo/resource/OSM_Mersey137<br>gr/yago2geo/resource/OSM_RiverMersey664<br>gr/yago2geo/resource/OSM_RiverAlt903                                                                                                                         |   |
| http://kr.di.uoa.g<br>http://kr.di.uoa.g<br>http://kr.di.uoa.g                                                                   | x9<br>gr/yago2geo/resource/OSM_Mersey137<br>gr/yago2geo/resource/OSM_RiverMersey664<br>gr/yago2geo/resource/OSM_RiverAlt903<br>gr/yago2geo/resource/OSM_RiverAlt941                                                                                 |   |
| http://kr.di.uoa.g<br>http://kr.di.uoa.g<br>http://kr.di.uoa.g<br>http://kr.di.uoa.g                                             | x0<br>gr/yago2geo/resource/OSM_Mersey137<br>gr/yago2geo/resource/OSM_RiverMersey664<br>gr/yago2geo/resource/OSM_RiverAlt903<br>gr/yago2geo/resource/OSM_RiverAlt941                                                                                 |   |
| http://kr.di.uoa.g<br>http://kr.di.uoa.g<br>http://kr.di.uoa.g<br>http://kr.di.uoa.g<br>http://kr.di.uoa.g                       | x0<br>pr/yago2geo/resource/OSM_Mersey137<br>pr/yago2geo/resource/OSM_RiverMersey664<br>pr/yago2geo/resource/OSM_RiverAlt903<br>pr/yago2geo/resource/OSM_RiverAlt941<br>pr/yago2geo/resource/OSM_RiverAlt991                                         |   |
| http://kr.di.uoa.g<br>http://kr.di.uoa.g<br>http://kr.di.uoa.g<br>http://kr.di.uoa.g<br>http://kr.di.uoa.g<br>http://kr.di.uoa.g | x9<br>gr/yago2geo/resource/OSM_Mersey137<br>gr/yago2geo/resource/OSM_RiverMersey664<br>gr/yago2geo/resource/OSM_RiverAlt903<br>gr/yago2geo/resource/OSM_RiverAlt991<br>gr/yago2geo/resource/OSM_RiverAlt991<br>gr/yago2geo/resource/OSM_RiverAlt571 |   |

### How can we evaluate geospatial QA systems?

### • Benchmarks

- GeoQuestions201 (Punjani et al., 2018)
  - GeoQA, revised version of GeoQA, Hamzei et al(2022).
- GeoQuestion733 (forthcoming)
  - GeoQA2 (forthcoming)

Punjani, D., et al. "Template-based question answering over linked geospatial data." Proceedings of the 12th Workshop on Geographic Information Retrieval. 2018.

# The GeoQuestions733 Benchmark (to be released soon)

- It consists of 733 geospatial questions, query and answers.
- The benchmark dataset was collected from students of the Department of Informatics and Telecommunications of the National and Kapodistrian University of Athens, in the context of an Artificial Intelligence undergraduate course and Knowledge Technologies graduate course taught by Prof. Manolis Koubarakis (academic year 2020-2021).
- The students were asked to include in their questions one or more features and various kinds of geospatial relations.
  - Distance relations
  - Topological relations
  - Cardinal direction relation
- The students were asked to provide a natural language question and write their GeoSPARQL queries and execute the queries over YAGO2geo knowledge graph.

### **Categories of Questions**

- The questions in the benchmark GeoQuestions733 fall under the following categories:
- Asking for the attribute of a feature.
  - "Where is Loch Goil located?"
- Asking whether a feature is in a geospatial relation with another feature
  - "Is Liverpool east of Ireland?"
- Asking for features of a given class that are in a geospatial relation with another feature
   "Which counties border county Lincolnshire?"
- Asking for features of a given class that are in a geospatial relation with any features of another class
  - "Which lakes are near streams?"

### **Categories of Questions**

- Asking for features of a given class that are in a geospatial relation with an unspecified feature of another class which, in turn, is in another geospatial relation with a feature specified explicitly
  - "Which lakes are near streams in County Mayo?"
- As in category 3 to 5 plus more thematic and/or geospatial characteristics of the features that are expected as answers
  - "Which villages in Scotland have a population of less than 500 people?"
- Questions with quantities and aggregates and superlatives
  - "Which is the largest lake by area in Great Britain?"

### **Performance evaluation (GeoQA2 vs. Hamzei et al.)**

| System        | Generated Query (%) | Correctly Generated Query (%) |
|---------------|---------------------|-------------------------------|
| GeoQA2        | 92.6                | 86.63                         |
| Hamzei et al. | 96.2                | 45.11                         |

# Searching, browsing, exploring and visualizing linked geospatial data



# **Geospatial Technologies**

- Remote Sensing
- Geographic Information Systems (GIS)
- Global Positioning System (GPS)
- Digital Mapping Technologies









# Visualizing geospatial data



# Visualizing geospatial data



# Visualizing linked geospatial data

- Explore and filter geospatial linked data sources
- Translate GeoSPARQL/stSPARQL queries into map layers
- Manipulate layers (e.g., zoom, filter, coloring)
- Combine layers into maps





# Visualizing linked geospatial data

Map4RDF [Leon et al., 2012] LinkedGeoData [Stadler et al., 2012] SexTant [Bereta et al., 2013] Spacetime [Ronchetti et al., 2014] Facete [Stadler et al., 2014] DBpedia Atlas [Valsecchi et al., 2015] ESTA-LD [Mijovic et al., 2016] GEOYASGUI [Beek et al., 2017] GViz [McGlinn et al., 2019]

### **Sextant Architecture**



### **Thematic Maps**

**Definition:** A thematic map is a type of map designed to show a particular theme connected with a specific geographic area. These maps can portray physical, social, political, cultural, economic, sociological, agricultural, or any other aspects of a city, state, region, nation, or continent.



#### SEXTANT

0



| 1 |
|---|
|   |
|   |
|   |
| 1 |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |

#### Map telemation

Exprime

Turnial

### Map Ontology

The ontology allows us to describe each map in the RDF format and allows us to store the information in an RDF store and query it using SPARQL.

This enables the construction of Map Registries as dedicated SPARQL endpoints that store our maps.



# **Creating Layers**

The core feature of Sextant is the ability to create thematic maps by combining geospatial and temporal information that exists in a number of heterogeneous data sources:

- GeoSPARQL stSPARQL endpoints
- KML
- GeoJSON TopoJSON
- GeoTIFF
- WMS

### Layers

### GeoSPARQL and stSPARQL

We can pose GeoSPARQL or stSPARQL queries to endpoints and visualize the results as a layer on the map, using this modal in the UI of the application.

# Provide endpoint URI for queries Strabon endpoint URL Port 80 Layer Name Label Query Is a temporal layer. Ok Cancel

Pose a new Query

### Layers

### **Popular GIS Formats**

Users can also create layers utilizing existing popular GIS file formats, like KML, JSON, GeoTIFF and WMS.

Each format comes with a different modal in the UI of the application.

|        |                                          | Creat | e layer                |     |
|--------|------------------------------------------|-------|------------------------|-----|
| Create | layer ×                                  | 0     | Load JSON from URI     |     |
| 0      |                                          | -     | Label                  |     |
| U      | Load KML from URI                        |       | URI                    |     |
|        | Label                                    |       | Browse                 |     |
|        | 1181                                     |       | GeoJSON                | ~   |
|        | Browse                                   |       | Ok Can                 | pel |
|        | New york where                           |       |                        |     |
|        | Is a temporal layer                      |       |                        |     |
|        | Ok Cancel                                | Creat | e layer                |     |
|        |                                          | 0     |                        |     |
|        |                                          |       | Load www.s from server |     |
| Create | layer ×                                  |       | Laber                  |     |
| ด      |                                          |       | WMS server URI         |     |
|        | Load Image from URI                      |       | geoserver ~ 1.1.0      | v   |
|        | (Coordinates must be given in EPS0:4326) |       | Get Capabilities       |     |
|        | Label                                    |       | WMS layer              |     |
|        | Image URI                                |       |                        | ~   |
|        | Browse                                   |       | default style          | ~   |
|        | GDAL info URI                            |       | Is a temporal layer    |     |
|        | Browse                                   |       |                        |     |
|        | Ok Cancel                                |       | Ok Can                 | lec |
|        |                                          |       |                        |     |



### Layer functions

Each layer according to its type, can be further manipulated with some function buttons in the UI of the application:

- Zoom
- Info
- Update Query
- Global Styles

- Feature Styles
- Spatial Filter
- Move-on-top
- Download as KML



### **Map Sharing**

Share maps using map URI, or use the load map modal in the UI.

Map URI: http://<domain>/Sextant/?mapid=<mapID>

| Load Map            | from MapIC | ) |  |
|---------------------|------------|---|--|
| Map ID              |            |   |  |
| Lindpoint           |            |   |  |
| (leave empty for Re | Silon XI   |   |  |

# Map Registry

Definition: Map registries, are SPARQL endpoints that hold all the map information and metadata to assist us in saving and retrieving the maps.

| Map Information                                                                                                |  |
|----------------------------------------------------------------------------------------------------------------|--|
| Title                                                                                                          |  |
| Creator                                                                                                        |  |
| License                                                                                                        |  |
| Theme                                                                                                          |  |
| Description                                                                                                    |  |
| Endpoint Information                                                                                           |  |
| Endpoint Information<br>leave empty for Registry)                                                              |  |
| Endpoint Information<br>(eave empty for Registry)<br>URI<br>Port: 80                                           |  |
| Endpoint Information<br>Jeave empty for Registry)<br>URI<br>Port: 80<br>User                                   |  |
| Endpoint Information<br>leave empty for Registry)<br>URI<br>Port: 80<br>User<br>Password                       |  |
| Endpoint Information<br>(eave empty for Registry)<br>URI<br>Port: 80<br>User<br>Password<br>Select create mode |  |

OW

Cancel

Search for Maps

#### Search Parameters

| Tiše    |             |             |
|---------|-------------|-------------|
| Creator |             |             |
| License |             |             |
| Theme   |             |             |
|         | Draw Extent |             |
| Cooste  | Greece      | × 50 00 000 |

#### Endpoint Information

deave empty for Registry)

| are.    |        |
|---------|--------|
| Port 80 |        |
| Ok      | Cancel |

### **Predefined Queries**

Queries that are created by an expert and are stores as triples in a SPARQL endpoint.

Non-expert users can provide the URL of the endpoint and get a list of the descriptions of all the predefined queries available, then select one and visualize it on the map.



### **Predefined Queries**

Once the URL of a SPARQL endpoint is provided, the system searches for existing predefined queries and presents them to the user.

We can select each of the available queries to visualize on the map.

### Provide endpoint URL for queries http://test.strabon.di.uoa.gr/LEO/Query Connect Port: 80 Select query Present the field with id 1088 along with the measurements for CV and fertilization for its raster cells. Present the fields that belong to the farm with id 002 along with the measurements for CV and fertilization for their raster cells. Present the field with id 1045 along with the measurements for CV for its raster cells and apply color filtering according to the CV values. Find all fields that are close to water bodies with a threshold of 50 metres.

Cancel

Ok

Predefined Query selection

### **Statistical Charts**

### Automatic creation of charts over a layer's attribute

Users select a layer and a numeric attribute from the UI to create an interactive chart.

Each value in the chart takes us to the geometric feature on the map.



### **Explore Panel**

By providing the URL of a SPARQL endpoint in the Explore panel, we can view the underlying ontology in a tree form.

The number next to each class denotes the number of subclasses.

| Provide endpoint URI  |                  |         |
|-----------------------|------------------|---------|
| http://dbpedia.org/sp | lignuted         |         |
| Port: 80              |                  | Connect |
|                       | Festival 🔘       |         |
|                       | MusicGroup 💮     |         |
|                       | Organization (1) |         |
|                       | Product 🔘        |         |
|                       | NaturaPerson 🔘   |         |
|                       | SocialPerson ()  |         |
|                       | Thing 🗇          |         |

### **Explore**

### **Classes and Properties**

|                | Festival 🔘        |  |
|----------------|-------------------|--|
|                | MusicGroup 🔘      |  |
|                | Organization (    |  |
| Organization   |                   |  |
|                |                   |  |
| URI            |                   |  |
| http://scheme. | arg/Organization  |  |
|                | Group 🔘           |  |
|                | Product 🔘         |  |
|                | Natura/Person 🔘   |  |
|                | Conis Barros Co   |  |
|                | occas, is son it. |  |

| MusicGroup 🔘                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Organization                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                     |
| Organization                                                                                                                                                                                                                                                                                   | Land 🕥                                                                                                                                                                              |
| +<br>URI:<br>http://schema.org/Organization                                                                                                                                                                                                                                                    | Land                                                                                                                                                                                |
| Group 🔘                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                     |
| Properties:<br>http://www.w3.org/1999/02/22-stf-syntax-cs#type<br>http://www.w3.org/2022/27/ss/#uama/w                                                                                                                                                                                         | http://data.linkedeodata.eu/talking-fields/ontology#Land                                                                                                                            |
| http://dbpedia.org/britology/abstract<br>http://dbpedia.org/1998/00/22 eff egitae reflangting<br>http://dbpedia.org/britology/active/tearsEndriear<br>http://www.ed.org/2001/336.BritemaRy/tear                                                                                                | Farm + / i O URI: http://data.linkedeodata.eu/talking-fields/ontology#Farm                                                                                                          |
| http://dopedia.org/ontology/sctive/HarsStart/Year<br>http://dopedia.org/001/338.3cternelig/har<br>http://dopedia.org/1009/0352.ed.ap-tax-nellengthing<br>http://dopedia.org/ntology/scsociatedBand<br>http://dopedia.org/ontology/scsociatedBand<br>http://dopedia.org/ontology/ScsociatedBand | Properties:<br>http://www.w3.org/1999/02/22-rdf-syntax-ns#type<br>null<br>http://data.linkedeodata.eu/talking-fields/ontology#hasFarmId<br>http://www.w3.org/2001/XMLSchema#integer |
| http://dbpedia.org/ontology/associatedMasicalArtist<br>http://dbpedia.org/entology/Maxaalartee                                                                                                                                                                                                 | http://data.linkedeodata.eu/talking-fields/ontology#hasFarmName<br>http://www.w3.org/2001/XMLSchema#string                                                                          |
| http://dopedia.org/ontology/background<br>http://dopedia.org/ontology/bacdMember<br>http://dopedia.org/ontology/bacdMember                                                                                                                                                                     | http://www.opengis.net/ont/geosparql#hasGeometry<br>null                                                                                                                            |
| http://dopedia.org/ontology/capacity<br>http://dopedia.org/001/336.3chema/hoo/legeteetmage<br>http://dopedia.org/ontology/ceo                                                                                                                                                                  | 286                                                                                                                                                                                 |

### **Explore**

### Visual Query Builder

|         | Farm                                                                                         |
|---------|----------------------------------------------------------------------------------------------|
| Fan     | m                                                                                            |
| +       | / 1 0                                                                                        |
| URI:    |                                                                                              |
| http:/  | /data.linkedeodata.eu/talking-fields/ontology#Farm                                           |
| Prop    | erties:                                                                                      |
| http:/  | /www.w3.org/1999/02/22-rdf-syntax-ns#type                                                    |
| http:// | /data.linkedeodata.eu/talking-fields/ontology#hasFarmId<br>www.w3.org/2001/XMLSchema#integer |
| http:/  | /data.linkedeodata.eu/talking-fields/ontology#hasFarmName                                    |
| nttp:// | www.w3.org/2001/XMLSchemalistring                                                            |
| http:/  | /www.opengis.net/ont/geosparql#hasGeometry                                                   |
| T I     |                                                                                              |
| Ŧ       |                                                                                              |

| roperty U                            | RI: http://data.link                                                                         | edeodata                    | .eu/talking-fields/ontoic                                                               | ogy#hasF                       | armName                    |   |
|--------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------|-----------------------------------------------------------------------------------------|--------------------------------|----------------------------|---|
|                                      | TYPE                                                                                         |                             | RULE                                                                                    |                                | VALUE                      |   |
|                                      | REGULAR                                                                                      | *                           | CONTAINS                                                                                | \$                             | Value (str)                |   |
|                                      | REGULAR                                                                                      | \$                          | CONTAINS                                                                                | \$                             | Value (str)                |   |
|                                      | REGULAR                                                                                      | \$                          | CONTAINS                                                                                | \$                             | Value (str)                |   |
| Create N                             | lumeric Filte                                                                                | ər                          | Add filter(s                                                                            | 5)                             |                            | > |
| Create N<br>Class URI:<br>Property U | lumeric Filte<br>http://data.linkedee<br>RI: http://data.link                                | <b>e</b> r<br>edeodata      | Add filter(s<br>talking-fields/ontology#                                                | 5)<br>Farm<br>ogy#hasF         | amld                       | × |
| Create N<br>Class URI:<br>Property U | lumeric Filte<br>http://data.linkede<br>RI: http://data.link<br>TYPE                         | e <b>r</b><br>odata.eu/     | Add filter(s<br>talking-fields/ontology#<br>.ew/talking-fields/ontolog<br>RULE          | 5 <b>)</b><br>Farm<br>ogy#hasF | armid<br>VALUE             | × |
| Create N<br>Class URI:<br>Property U | Iumeric Filte<br>http://data.linkede<br>RI: http://data.link<br>TYPE<br>OPTIONAL             | er<br>odata.eu/<br>edeodata | Add filter(s<br>talking-fields/ontology#<br>.eu/talking-fields/ontolo<br>RULE           | s)<br>Farm<br>₀gy#hasF         | armid<br>VALUE<br>30       | × |
| Create N<br>Class URI:<br>Property U | lumeric Filte<br>http://data.linkedee<br>RI: http://data.link<br>TYPE<br>OPTIONAL<br>REGULAR | edeodata                    | Add filter(s<br>talking-fields/ontology#<br>.eu/talking-fields/ontolo<br>RULE<br><<br>< | Farm<br>ogy#hasF               | armid<br>VALUE<br>30<br>50 | ж |

Add filter(s)

**Create String Filter** 

View Class's Filters

Class URI: http://data.linkedeodata.eu/talking-fields/ontology#Farm

| PROPERTY    | TYPE     | RULE              | VALUE  |
|-------------|----------|-------------------|--------|
| hasFarmId   | regular  | num.less          | 5      |
| hasFarmId   | optional | num.less          | 3      |
| hasGeometry | regular  | spatial.intersect | Khania |

×

×

\$

#### **Create Spatial Filter**

Class URI: http://data.linkedeodata.eu/talking-fields/ontology#RasterCell

Property URI: http://www.opengis.net/ont/geosparqlithasGeometry

| TYPE    |    | RULE       |  |
|---------|----|------------|--|
| REGULAR | \$ | INTERSECTS |  |

#### Draw Extent



#### Add filter(s)

### Describe

#### Describe results About: http://schema.org/Organization

# 0

| http://dbpedia.org/resource/3Com                                            |
|-----------------------------------------------------------------------------|
| http://dbpedia.org/resource/7-Eleven                                        |
| http://dbpedia.org/resource/Aardman_Animations                              |
| http://dbpedia.org/resource/About.com                                       |
| http://dbpedia.org/vesource/Academy_of_Motion_P<br>cture_Arts_arid_Sciences |
| http://dbpedia.org/wsource/Acom_Computers                                   |
| http://dbpedia.org/vesource/Activision                                      |
| http://dbpedia.org/vesource/Ad_Llb_Jnc.                                     |
| http://dbpedia.org/resource/Adnems_Brewery                                  |

Subject

### http://www.w3.org/1999/02/22-rdf-syntax-ns/type http://www.w3.org/1999/02/22-rdf-syntax-ns/type http://www.w3.org/1999/02/22-rdf-syntax-ns/type http://www.w3.org/1999/02/22-rdf-syntax-ns/type

Predicate

http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://www.w3.org/1999/02/22-rdf-syntax-ns#type

http://www.w3.org/1998/02/22-ndf-syntax-ns#type http://www.w3.org/1998/02/22-ndf-syntax-ns#type

### http://schema.org/Organization http://schema.org/Organization http://schema.org/Organization http://schema.org/Organization

Object

н

http://schema.org/Organization http://schema.org/Organization http://schema.org/Organization

http://schema.org/Organization

### Describe

#### Describe results

About: http://dbpedia.org/resource/Activision

Subject

# ର

http://dbpedia.org/resource/Activision http://dbpedia.org/vesource/Activision http://dbpedia.org/wsource/Activision

http://dbpedia.org/resource/Activision

http://dbpedia.org/resource/Activision http://dbpedia.org/wsource/Activision http://dbpedia.org/vesource/Activision http://dbpedia.org/vesource/Activision

| Predicate                                        | Object                                                     |
|--------------------------------------------------|------------------------------------------------------------|
| http://www.w0.org/1999/02/22-rdf-syntix-ns#type  | http://www.w0.org/2002/07/ow/#Thing                        |
| http://www.w3.org/1099/02/22-rdf-syntax-ns#type  | http://dbpedia.org/ontology/Company                        |
| http://www.wd.org/1999/02/22-rdf-syntax-naittype | http://www.ontologydesignpatterns.org<br>LowMAgent         |
| http://www.w0.org/1999/02/22-rdf-syntax-nsiltype | http://www.onfologydesignpatterns.org<br>Low/#Socia/Person |
| http://www.w3.org/1998/02/22-rdf-syntax-nalitype | http://www.wikidata.org/entity/Q24229                      |
| http://www.wd.org/1999/02/22-rdf-syntax-na#type  | http://www.wikadata.org/entity/Q43229                      |
| http://www.w0.org/1999/02/22-rdf-syntax-na#type  | http://dbpedia.org/ontology/Agent                          |
|                                                  |                                                            |

http://www.w3.org/1999/02/22-rdf-syntax-nalitype

### c//dbpedia.org/ontology/Company ://www.ontologydesignpatterns.org/ont/dui/DU ulit.Agent ://www.ontologydesignpetterns.org/on5/duil/DU wH/Socia/Person ://www.wkidata.org/entity/Q24229098

http://dbpedia.org/ontology/Organisation

### **Future Work**

- New version of Sextant that offers both a frontend UI and a backend API to access data layers as a service
- New visualization tool that allows faceted browsing of data sources and allow non-expert users to construct custom datasets based on their selections over different resources

# **Open Questions**


### **Open Questions**

- How can we build GeoSPARQL and GeoSPARQL+ query processors that scale to the extreme volumes of geospatial data, information and knowledge:
  - Owned by a national cartographic agency
  - Produced by Copernicus

• Strabo 2 is a good start! 😊



- How do we build **spatiotemporal query answering systems** that scale to extreme volumes of spatiotemporal data?
- The work of Nikitopoulos et al. (2021) is a good start!

**P. Nikitopoulos et al.** Parallel and scalable processing of spatio-temporal RDF queries using Spark. GeoInformatica 25(4): 623-653 (2021)



- How do you develop question answering systems for the dataset discovery step of our pipeline (discovering Earth Observation datasets)?
- See our forthcoming EarthQA system!



- How do we build **spatiotemporal question answering systems** over **spatiotemporal knowledge graphs**?
- See forthcoming work of our team with colleagues from L3S, Hannover and University of Bonn.







- How do we develop **semantic data cube systems**?
- See our forthcoming system Plato.



**D. Bilidas et al.** Plato: A semantic data cube system. Forthcoming.



#### Thanks! Questions?

- Thanks to all our colleagues for their contributions.
- For more, see our web pages:
  - <u>http://ai.di.uoa.gr</u> for Manolis, Despina, Dimitris, George, Theofilos, Dharmen and George.
  - <u>https://rsim.berlin/</u> for Begüm.



Thank you!